
Open Geospatial Consortium

Submission Date: <yyyy-mm-dd>

Approval Date: <yyyy-mm-dd>

Publication Date: <2020-10-30>

External identifier of this OGC® document: http://www.opengis.net/doc/IS/CityGML-1/3.0

Internal reference number of this OGC® document: 20-010

Version: 0.9

Category: OGC® Conceptual Model

Editors: Thomas H. Kolbe, Tatjana Kutzner, Carl Stephen Smyth, Claus Nagel, Carsten Roensdorf,
Charles Heazel

OGC City Geography Markup Language (CityGML) Part 1: Conceptual Model
Standard

Copyright notice

Copyright © 2020 Open Geospatial Consortium

To obtain additional rights of use, visit http://www.opengeospatial.org/legal/

Warning

This document is not an OGC Standard. This document is distributed for review and comment. This
document is subject to change without notice and may not be referred to as an OGC Standard.

Recipients of this document are invited to submit, with their comments, notification of any relevant
patent rights of which they are aware and to provide supporting documentation.

Document type: OGC® Standard

Document subtype: Conceptual Model

Document stage: Draft

Document language: English

1

http://www.opengis.net/doc/IS/CityGML-1/3.0
http://www.opengeospatial.org/legal/

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the
terms set forth below, to any person obtaining a copy of this Intellectual Property and any associated
documentation, to deal in the Intellectual Property without restriction (except as set forth below), including without
limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense copies of the
Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that
all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to
the above copyright notice, a notice that the Intellectual Property includes modifications that have not been
approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT
MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED
IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL
MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT THE
USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL
PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM ANY ALLEGED
INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH THE IMPLEMENTATION, USE,
COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property
together with all copies in any form. The license will also terminate if you fail to comply with any term or condition
of this Agreement. Except as provided in the following sentence, no such termination of this license shall require the
termination of any third party end-user sublicense to the Intellectual Property which is in force as of the date of
notice of such termination. In addition, should the Intellectual Property, or the operation of the Intellectual Property,
infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright, trademark or other right of a
third party, you agree that LICENSOR, in its sole discretion, may terminate this license without any compensation or
liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or cause to be
destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the
Intellectual Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this
Intellectual Property without prior written authorization of LICENSOR or such copyright holder. LICENSOR is and
shall at all times be the sole entity that may authorize you or any third party to use certification marks, trademarks
or other special designations to indicate compliance with any LICENSOR standards or specifications. This Agreement
is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United
Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In the event any
provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be modified so as
to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force and effect. No
decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies available to it.

2

Table of Contents
1. Introduction. 9

2. Scope . 10

3. Conformance . 13

3.1. Conceptual Models . 13

3.2. Implementation Specifications . 13

3.3. Conformance Classes . 13

4. References . 15

5. Terms and Definitions. 16

6. Conventions . 18

6.1. Identifiers . 18

6.2. UML Notation . 18

7. Overview of CityGML . 22

7.1. Modularization . 22

7.2. General Modelling Principles . 24

7.3. Representation of Spatial Properties . 26

7.4. CityGML Core Model: Space Concept, Levels of Detail, Special Spatial Types 29

7.5. Appearances . 35

7.6. Modelling Dynamic Data . 35

7.7. Extending CityGML . 38

8. CityGML UML Model . 39

8.1. Structural Overview of Requirements Classes . 39

8.2. Core . 40

8.3. Appearance . 56

8.4. City Furniture . 61

8.5. City Object Group . 64

8.6. Dynamizer . 68

8.7. Generics . 74

8.8. Land Use . 80

8.9. Point Cloud . 83

8.10. Relief . 85

8.11. Transportation . 88

8.12. Vegetation. 98

8.13. Versioning . 102

8.14. Water Body . 105

8.15. Construction . 109

8.16. Bridge . 118

8.17. Building . 126

8.18. Tunnel . 135

3

9. CityGML Data Dictionary . 143

9.1. ISO Classes . 143

9.2. Core . 152

9.3. Appearance. 178

9.4. CityFurniture. 186

9.5. CityObjectGroup . 188

9.6. Dynamizer . 191

9.7. Generics . 203

9.8. LandUse . 212

9.9. PointCloud . 214

9.10. Relief . 215

9.11. Transportation . 220

9.12. Vegetation . 240

9.13. Versioning . 245

9.14. WaterBody . 249

9.15. Construction . 253

9.16. Bridge . 272

9.17. Building . 281

9.18. Tunnel . 295

10. Application Domain Extension (ADE) . 304

10.1. General Rules for ADEs. 304

10.2. Defining New ADE Model Elements. 304

10.3. Augmenting CityGML Feature Types with Additional ADE Properties 305

10.4. Encoding of ADEs . 307

10.5. Requirements and Recommendations . 307

Annex A: Abstract Test Suite (Normative) . 310

A.1. Introduction . 310

A.2. Conformance Class Core. 310

A.3. Conformance Class Appearance. 312

A.4. Conformance Class CityFurniture . 313

A.5. Conformance Class CityObjectGroup . 314

A.6. Conformance Class Dynamizer . 316

A.7. Conformance Class Generics. 317

A.8. Conformance Class LandUse. 319

A.9. Conformance Class PointCloud. 320

A.10. Conformance Class Relief . 321

A.11. Conformance Class Transportation. 323

A.12. Conformance Class Vegetation . 324

A.13. Conformance Class Versioning. 326

A.14. Conformance Class WaterBody . 327

A.15. Conformance Class Construction. 328

4

A.16. Conformance Class Bridge. 330

A.17. Conformance Class Building . 331

A.18. Conformance Class Tunnel . 333

A.19. Conformance Class ADE. 334

Annex B: Revision History . 337

Annex C: Glossary . 338

C.1. ISO Concepts . 339

C.2. Abbreviated Terms . 343

Annex D: Bibliography . 345

5

i. Abstract

This standard defines the open CityGML Conceptual Model for the storage and exchange of virtual
3D city models. The CityGML Conceptual Model is defined by a Unified Modeling Language (UML)
object model. This UML model builds on the ISO Technical Committee 211 (ISO/TC211) conceptual
model standards for spatial and temporal data. Building on the ISO foundation assures that the
man-made features described in the city models share the same spatiotemporal universe as the
surrounding countryside within which they reside.

A key goal for the development of the CityGML Conceptual Model is to provide a common definition
of the basic entities, attributes, and relations of a 3D city model. This is especially important with
respect to the cost-effective sustainable maintenance of 3D city models, allowing the reuse of the
same data in different application fields.

ii. Keywords

The following are keywords to be used by search engines and document catalogues.

ogcdoc, OGC document, CityGML, 3D city models

iii. Preface

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

iv. Submitting organizations

This Document was submitted to the Open Geospatial Consortium (OGC) by the members of the
CityGML Standards Working Group of the OGC. Amongst others, this comprises the following
organizations:

• To be provided

• …

v. Submitters

All questions regarding this submission should be directed to the editors or the submitters:

Table 1. Submission Contact Points

Name Institution

Thomas H. Kolbe Chair of Geoinformatics, Technical University of Munich,
Germany

6

Name Institution

Tatjana Kutzner Chair of Geoinformatics, Technical University of Munich,
Germany

Carl Stephen Smyth OpenSitePlan, USA

Claus Nagel virtualcitySYSTEMS, Germany

Carsten Roensdorf Ordnance Survey, Great Britain

Charles (Chuck) Heazel HeazelTech LLC

Sylvester Hagler U.S. National Geospatial-Intelligence Agency

vi. Participants in development

In addition to the Editors of the specification the following individuals contributed to the CityGML
3.0 development:

Table 2. Participants in Development

Name Institution

Giorgio Agugiaro 3D Geoinformation Group, Delft University of Technology, the
Netherlands

Christof Beil Chair of Geoinformatics, Technical University of Munich,
Germany

Filip Biljecki Department of Architecture, National University of Singapore,
Singapore

Kanishk Chaturvedi Chair of Geoinformatics, Technical University of Munich,
Germany

Volker Coors Stuttgart University of Applied Sciences, Germany

Emmanuel Devys Institut national de l’information géographique et forestière
(IGN), France

Jürgen Ebbinghaus AED-SICAD, Germany

Heinrich Geerling Architekturbüro Geerling, Germany

Gilles Gesquière LIRIS, University of Lyon, France

Gerhard Gröger CPA ReDev GmbH, Germany

Karl-Heinz Häfele Institute for Automation and Applied Informatics, Karlsruhe
Institute of Technology, Germany

Nobuhiro Ishimaru Hitachi, Ltd., Japan

Marc-Oliver Löwner Institute for Geodesy and Photogrammetry, Technische
Universität Braunschweig, Germany

Diana Moraru Ordnance Survey, Great Britain

Friso Penninga Geonovum, the Netherlands

7

Name Institution

Helga Tauscher Faculty of Spatial Information, HTW Dresden - University of
Applied Sciences, Germany

Linda van den Brink Geonovum, the Netherlands

Heidi Vanparys Danish Agency for Data Supply and Efficiency, Denmark

Sisi Zlatanova Faculty of Built Environment, University of New South Wales,
Australia

The table only lists persons that were involved in the development of CityGML 3.0. CityGML 3.0 is
based on extensive previous work that was done for CityGML 2.0. For persons involved in the
previous work, please refer to the CityGML 2.0 specification.

vii. Acknowledgements

The editors wish to thank the Special Interest Group 3D (SIG 3D) of the initiative Geodata
Infrastructure Germany (GDI-DE) which originally started the development of CityGML, the
CityGML Standards Working Group and the 3D Information Management (3DIM) Working Group of
the OGC as well as all contributors of change requests and comments.

This is the official CityGML logo. For current news on CityGML and information about ongoing
projects and fields of research in the area of CityGML see http://www.citygml.org and
http://www.citygmlwiki.org.

8

http://www.citygml.org
http://www.citygmlwiki.org

Chapter 1. Introduction
An increasing number of cities and companies are building virtual 3D city models for different
application areas like urban planning, mobile telecommunication, disaster management, 3D
cadastre, tourism, vehicle and pedestrian navigation, facility management and environmental
simulations. Furthermore, in the implementation of the European Environmental Noise Directive
(END, 2002/49/EC) 3D geoinformation and 3D city models play an important role.

In recent years, most virtual 3D city models were defined as purely graphical or geometrical
models, neglecting the semantic and topological aspects. Thus, these models could almost only be
used for visualization purposes but not for thematic queries, analysis tasks, or spatial data mining.
Since the limited reusability of models inhibits the broader use of 3D city models and may not
justify the costs associated with maintaining city models, a more general modelling approach had
to be taken in order to satisfy the information needs of the various application fields.

The CityGML Conceptual Model Standard defines a common semantic information model for the
representation of 3D urban objects that can be shared over different applications. The latter
capability is especially important with respect to the cost-effective sustainable maintenance of 3D
city models, allowing governments and companies to reap the benefits of their investment in 3D
city models by being able to put the same models into play in different application fields. The
targeted application areas explicitly include city planning, architectural design, tourist and leisure
activities, environmental simulation, mobile telecommunication, disaster management, homeland
security, real estate management, vehicle and pedestrian navigation, and training simulators.

The CityGML Conceptual Model defines the classes and relations for the most relevant topographic
objects in cities and regional models with respect to their geometrical, topological, semantical, and
appearance properties. “City” is broadly defined to comprise not just built structures, but also
elevation, vegetation, water bodies, city furniture, and more. Included are generalization
hierarchies between thematic classes, aggregations, relations between objects, and spatial
properties. CityGML is applicable for large areas and small regions, and can represent the terrain
and 3D objects in different levels of detail simultaneously. Since both simple, single scale models
without topology and few semantics as well as very complex multi-scale models with full topology
and fine-grained semantical differentiations can be represented, CityGML enables the consistent
representation of 3D urban objects across different geographic information systems and users.

9

Chapter 2. Scope
This Standard documents an OGC Conceptual Model (CM) Standard for specifying the
representation of virtual 3D city and landscape models. The CityGML 3.0 Conceptual Model is a
Platform Independent Model (PIM). It defines concepts in a manner which is independent of any
implementing technology. As such, the CityGML CM cannot be implemented directly. Rather, it
serves as the base for Platform Specific Models (PSM). A PSM adds to the PIM the technology-
specific details needed to fully define the CityGML model for use with a specific technology. The
PSM can then be used to generate the schema and other artifacts needed to build CityGML 3.0
implementations.

This standard does not define the PSMs nor schemas for CityGML 3.0. Future CityGML 3.0
Implementation Specifications (IS) will be developed to address this need. At a minimum, support
for a Geography Markup Language (GML) Impementation Specification is expected. Additional
Implementation Specifications for JSON and database schemas are also highly desirable.

The target of the conformance classes specified in this document are:

• CityGML Implementation Specifications that provide encodings for the UML conceptual model
specified in this document, and

• Additional UML models that can be created by users to extend this conceptual model as
Application Domain Extensions (ADEs).

CityGML models are comprised of georeferenced 3D vector data along with the semantics
associated with the data. In contrast to other 3D vector formats, CityGML is based on a rich, general
purpose information model in addition to geometry and appearance information that allows for
the integration of a variety of source data to come together in a City Model. To enable the use of
CityGML in specific domain areas, CityGML has historically provided an extension mechanism to
enrich the data with identifiable features and properties, preserving semantic interoperability.
Recognizing that an implementable expansion mechanism might have dependencies based on the
encoding language, the CityGML 3.0 Conceptual Model specifies high level requirements rather
than a full extension model.

Targeted application areas explicitly include:

• Urban and landscape planning;

• Architectural design;

• Tourist and leisure activities;

• Environmental, energy and mobility simulations;

• Mobile telecommunications;

• Disaster management;

• Homeland security;

• Vehicle and pedestrian navigation;

• Training simulators and mobile robotics.

10

The future CityGML 3.0 Implementation Specifications will be implementable source formats for 3D
portraying or transformation into dedicated portrayal formats such as the OGC I3S or the OGC 3D
Tiles Community Standards, OGC KML, COLLADA or glTF. The OGC 3D Portrayal Service (3DPS) may
be used for content delivery.

Features of the CityGML 3.0 Conceptual Model:

• Geospatial Information Model (ontology) for urban landscapes based on the ISO 19100 family.

• Representation of 3D geometries, based on the ISO 19107 model, independent of data encodings,
as well as of 3D point clouds.

• Grouping into space hierarchies, including concepts like stories/floors within buildings.

• Representation of object surface characteristics (e.g. textures, materials).

• Representation of dynamic, i.e. time-dependent, properties of city models.

• Taxonomies and aggregations including:

◦ Digital Terrain Models as a combination of triangulated irregular networks (TINs), regular
grids, break and skeleton lines, mass points.

◦ Sites (currently buildings, other constructions, bridges, and tunnels).

◦ Vegetation (areas, volumes, and solitary objects with vegetation classification).

◦ Water bodies (volumes, surfaces).

◦ Transportation facilities (graph structures, 3D space, and 3D surface data).

◦ Land use (representation of areas of the earth’s surface dedicated to a specific land use).

◦ City furniture.

◦ Generic city objects and attributes.

◦ User-definable (recursive) grouping.

• Multiscale model with 4 well-defined consecutive Levels of Detail (LOD), applicable to both
interior and exterior:

◦ LOD0 – Highly generalized model.

◦ LOD1 – Block model / extrusion objects.

◦ LOD2 – Realistic, but still generalized model.

◦ LOD3 – Highly detailed model.

• Multiple representations in different LODs simultaneously and generalization relations
between objects in different LODs.

• Ability to combine different interior and exterior LODs, including representation of floor plans.

• Optional topological connections between feature (sub)geometries.

• Enables a variety of different encoding specifications, including GML and JSON.

• Extension of the conceptual model through code lists, generic objects and Application Domain
Extensions (ADEs).

• With CityGML 3.0, ADEs become platform-independent models on a conceptual level that can be
mapped to multiple and different target encodings. ADEs are implemented as UML models that

11

extend the conceptual model in this standard. This includes a mechanism that favors the
insertion of additional feature properties into any defined feature class through 'hooks' over
subtyping of features. This means that the existing feature classes can be used and additional
properties from one or more ADEs can easily be supported in different encodings.

• Ability to specify an ADE that can be further extended.

12

Chapter 3. Conformance
This standard defines a Conceptual Model which is independent of any encoding or formatting
techniques. The Standardization Targets for this standard are:

1. Conceptual Models (extended versions of this conceptual model)

2. Implementation Specifications (encodings of this conceptual model)

3.1. Conceptual Models
A Conceptual Model standardization target is a version of the CityGML 3.0 Conceptual Model (CM)
tailored for a specific user community. This tailoring can include:

1. Omission of one or more of the optional UML packages

2. Reduction of the multiplicity for an attribute or association

3. Restriction on the valid values for an attribute

4. Additional concepts documented through ADEs.

Of these options, actions #1, #2, and #3 can be performed when creating an implementation
specification. Only action #4 requires an extension of the CityGML conceptual model. These
extensions are accomplished using the ADE mechanism described in Section 10 Application Domain
Extensions (ADE).

Extensions of the CityGML Conceptual Model conform with the ADE Conformance Class.

3.2. Implementation Specifications
Implementation Specifications define how a Conceptual Model should be implemented using a
specific technology. Conformant Implementation Specifications provide evidence that they are an
accurate representation of the Conceptual Model. This evidence should include implementations of
the abstract tests specified in Annex A (normative) of this document.

Since this standard is agnostic to the implementing technologies, the specific techniques to be used
for conformance testing cannot be specified. Implementation Specifications need to provide
evidence of conformance which is appropriate for the implementing technologies. This evidence
should be provided as an annex to the Implementation Specification document.

3.3. Conformance Classes
This standard identifies seventeen (17) conformance classes. One conformance class is defined for
each package in the UML model. Each conformance class is defined by one requirements class. The
tests in Annex A are organized by Requirements Class. So an implementation of the Core
conformance class must pass all tests specified in Annex A for the Core requirements class.

Of these seventeen conformance classes, only the Core conformance class is mandatory. All other
conformance classes are optional. In the case where a conformance class has a dependency on

13

another conformance class, that conformance class should also be implemented.

The CityGML Conceptual Model is defined by the CityGML UML model. This standard is a
representation of that UML model in document form. In the case of a discrepancy between the UML
model and this document, the UML model takes precedence.

14

Chapter 4. References
The following normative documents contain provisions that, through reference in this text,
constitute provisions of OGC 20-010. For dated references, subsequent amendments to, or revisions
of, any of these publications do not apply. However, parties to agreements based on this part of OGC
20-010 are encouraged to investigate the possibility of applying the most recent editions of the
normative documents indicated below. For undated references, the latest edition of the normative
document referred to applies.

• IETF: RFC 2045 & 2046, Multipurpose Internet Mail Extensions (MIME). (November 1996),

• IETF: RFC 3986, Uniform Resource Identifier (URI): Generic Syntax. (January 2005)

• INSPIRE: D2.8.III.2 Data Specification on Buildings – Technical Guidelines. European
Commission Joint Research Centre.

• ISO: ISO 19101-1:2014, Geographic information - Reference model - Part 1: Fundamentals

• ISO: ISO 19103:2015, Geographic Information – Conceptual Schema Language

• ISO: ISO 19105:2000, Geographic information – Conformance and testing

• ISO: ISO 19107:2003, Geographic Information – Spatial Schema

• ISO: ISO 19108:2002/Cor 1:2006, Geographic information – Temporal schema — Technical
Corrigendum 1

• ISO: ISO 19109:2015, Geographic Information – Rules for Application Schemas

• ISO: ISO 19111:2019, Geographic information – Referencing by coordinates

• ISO: ISO 19123:2005, Geographic information — Schema for coverage geometry and functions

• ISO: ISO 19156:2011, Geographic information – Observations and measurements

• ISO: ISO/IEC 19505-2:2012, Information technology — Object Management Group Unified
Modeling Language (OMG UML) — Part 2: Superstructure

• ISO/IEC 19507:2012, Information technology — Object Management Group Object Constraint
Language (OCL)

• ISO: ISO/IEC 19775-1:2013 Information technology — Computer graphics, image processing and
environmental data representation — Extensible 3D (X3D) — Part 1: Architecture and base
components

• Khronos Group Inc.: COLLADA – Digital Asset Schema Release 1.5.0

• OASIS: Customer Information Quality Specifications - extensible Address Language (xAL),
Version v3.0

• OGC: The OpenGIS® Abstract Specification Topic 5: Features, OGC document 08-126

• OGC: The OpenGIS™ Abstract Specification Topic 8: Relationships Between Features, OGC
document 99-108r2

• OGC: The OpenGIS™ Abstract Specification Topic 10: Feature Collections, OGC document 99-110

15

Chapter 5. Terms and Definitions
This document uses the terms defined in Sub-clause 5.3 of [OGC 06-121r8], which is based on the
ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards. In
particular, the word “shall” (not “must”) is the verb form used to indicate a requirement to be
strictly followed to conform to this Standard.

For the purposes of this document, the following additional terms and definitions apply.

2D data
geometry of features is represented in a two-dimensional space
NOTE In other words, the geometry of 2D data is given using (X,Y) coordinates.
[INSPIRE D2.8.III.2, definition 1]

2.5D data
geometry of features is represented in a three-dimensional space with the constraint that, for each
(X,Y) position, there is only one Z
[INSPIRE D2.8.III.2, definition 2]

3D data
Geometry of features is represented in a three-dimensional space.
NOTE In other words, the geometry of 2D data is given using (X,Y,Z) coordinates without any
constraints.
[INSPIRE D2.8.III.2, definition 3]

application schema
A set of conceptual schema for data required by one or more applications. An application schema
contains selected parts of the base schemas presented in the ORM Information Viewpoint.
Designers of application schemas may extend or restrict the types defined in the base schemas to
define appropriate types for an application domain. Application schemas are information models
for a specific information community.
OGC Definitions Register at http://www.opengis.net/def/glossary/term/ApplicationSchema

codelist
A value domain including a code for each permissible value.

conceptual model
model that defines concepts of a universe of discourse
[ISO 19101-1:2014, 4.1.5]

conceptual schema

1. formal description of a conceptual model
[ISO 19101-1:2014, 4.1.6]

2. base schema. Formal description of the model of any geospatial information. Application
schemas are built from conceptual schemas.
OGC Definitions Register at http://www.opengis.net/def/glossary/term/ConceptualSchema

Implementation Specification

16

http://www.opengis.net/def/glossary/term/ApplicationSchema
http://www.opengis.net/def/glossary/term/ConceptualSchema

Specified on the OGC Document Types Register at http://www.opengis.net/def/doc-type/is

levels of detail
quantity of information that portrays the real world
NOTE The concept comprises data capturing rules of spatial object types, the accuracy and the types
of geometries, and other aspects of a data specification. In particular, it is related to the notions of
scale and resolution.
[INSPIRE Glossary]

life-cycle information
set of properties of a spatial object that describe the temporal characteristics of a version of a
spatial object or the changes between versions
[INSPIRE Glossary]

Platform (Model Driven Architecture)
the set of resources on which a system is realized.
[Object Management Group, Model Driven Architecture Guide rev. 2.0]

Platform Independent Model
a model that is independent of a spacific platform
[Object Management Group, Model Driven Architecture Guide rev. 2.0]

Platform Specific Model
a model of a system that is defined in terms of a specific platform
[Object Management Group, Model Driven Architecture Guide rev. 2.0]

17

http://www.opengis.net/def/doc-type/is

Chapter 6. Conventions

6.1. Identifiers
The normative provisions in this document are denoted by the URI

http://www.opengis.net/spec/CityGML-1/3.0

All requirements and conformance tests that appear in this document are denoted by partial URIs
relative to this base.

6.2. UML Notation
The CityGML Conceptual Model (CM) Standard is presented in this document through diagrams
using the Unified Modeling Language (UML) static structure diagram (see Booch et al. 1997). The
UML notations used in this standard are described in the diagram in Figure 1.

Figure 1. UML notation (see ISO TS 19103, Geographic information - Conceptual schema language).

All associations between model elements in the CityGML Conceptual Model are uni-directional.
Thus, associations in the model are navigable in only one direction. The direction of navigation is
depicted by an arrowhead. In general, the context an element takes within the association is

18

http://www.opengis.net/spec/CityGML-1/3.0

indicated by its role. The role is displayed near the target of the association. If the graphical
representation is ambiguous though, the position of the role has to be drawn to the element the
association points to.

The following stereotypes are used in this model:

• «ApplicationSchema» denotes a conceptual schema for data required by one or more
applications. In the CityGML Conceptual Model, every module is defined as a separate
application schema to allow for modularization.

• «FeatureType» represents features that are similar and exhibit common characteristics.
Features are abstractions of real-world phenomena and have an identity.

• «TopLevelFeatureType» denotes features that represent the main components of the conceptual
model. Top-level features may be further semantically and spatially decomposed and
substructured into parts.

• «Type» denotes classes that are not directly instantiable, but are used as an abstract collection
of operation, attribute and relation signatures. The stereotype is used in the CityGML
Conceptual Model only for classes that are imported from the ISO standards 19107, 19109,
19111, and 19123.

• «ObjectType» represents objects that have an identity, but are not features.

• «DataType» defines a set of properties that lack identity. A data type is a classifier with no
operations, whose primary purpose is to hold information.

• «Enumeration» enumerates the valid attribute values in a fixed list of named literal values.
Enumerations are specified in the CityGML Conceptual Model.

• «BasicType» defines a basic data type.

• «CodeList» enumerates the valid attribute values. In contrast to Enumeration, the list of values
is open and, thus, not given inline in the CityGML UML Model. The allowed values can be
provided within an external code list.

• «Union» is a list of attributes. The semantics are that only one of the attributes can be present at
any time.

• «Property» denotes attributes and association roles. This stereotype does not add further
semantics to the conceptual model, but is required to be able to add tagged values to the
attributes and association roles that are relevant for the encoding.

• «Version» denotes that the value of an association role that ends at a feature type is a specific
version of the feature, not the feature in general.

In order to enhance the readability of the CityGML UML diagrams, classes are depicted in different
colors. The following coloring scheme is applied:

Classes painted in yellow belong to the Requirements Class which is subject of discussion in that
clause of the standard in which the UML diagram is given. For example, in the context of Section
8.2, which introduces the CityGML Core module, the yellow color is used to denote classes that are

19

defined in the CityGML Core Requirements Class. Likewise, the yellow classes shown in the UML
diagram in Section 8.17 are associated with the Building Requirements Class that is subject of
discussion in that chapter.

Classes painted in blue belong to a Requirements Class different to that associated with the yellow
color. In order to explicitly denote to which Requirements Class these classes belong, their class
names are preceded by the UML package name of that Requirements Class. For example, in the
context of the Building Requirements Class, classes from the CityGML Core and the Construction
Requirements Classes are painted in blue and their class names are preceded by Core and
Construction, respectively.

Classes painted in green are defined in the ISO standards 19107, 19111, or 19123. Their class names
are preceded by the UML package name, in which the classes are defined.

Classes painted in grey are defined in the ISO standard 19109. In the context of this standard, this
only applies to the class AnyFeature. AnyFeature is an instance of the metaclass FeatureType and
acts as super class of all classes in the CityGML UML model with the stereotype «FeatureType». A
metaclass is a class whose instances are classes.

The color white is used for notes and Object Constraint Language (OCL) constraints that are
provided in the UML diagrams.

The example UML diagram in Figure 2 demonstrates the UML notation and coloring scheme used
throughout this standard. In this example, the yellow classes are associated with the CityGML
Building module, the blue classes are from the CityGML Core and Construction modules, and the
green class depicts a geometry element defined by ISO 19107.

20

Figure 2. Example UML diagram demonstrating the UML notation and coloring scheme used throughout
the CityGML Standard.

21

Chapter 7. Overview of CityGML
This standard defines an open CityGML Conceptual Model (CM) for the storage and exchange of
virtual 3D city and landscape models. These models include the most relevant entities of the urban
space like buildings, roads, railways, tunnels, bridges, city furniture, water bodies, vegetation, and
the terrain. The conceptual schema specifies how and into which parts and pieces physical objects
of the real world should be decomposed and classified. All objects can be represented with respect
to their semantics, 3D geometry, 3D topology, appearances, and their changes over time. Different
spatial representations can be provided for each object (outdoor and indoor) in four predefined
Levels of Detail (LOD 0-3). The CityGML 3.0 Conceptual Model (Chapter 8) is formally specified using
UML class diagrams, complemented by a data dictionary (Chapter 9) providing the definitions and
explanations of the object classes and attributes. This Conceptual Model is the basis for multiple
encoding standards, which map the concepts (or subsets thereof) onto exchange formats or
database structures for data exchange and storage.

While the CityGML Conceptual Model can be used for 3D visualization purposes, its special merits
lie in applications that go beyond visualization such as decision support, urban and landscape
planning, urban facility management, Smart Cities, navigation (both indoor and outdoor), Building
Information Modelling (especially for as-built documentation), integration of city and BIM models,
assisted and autonomous driving, and simulations in general (cf. Kolbe 2009). A comprehensive
overview on the many different applications of virtual 3D city models is given in [Biljecki et al.
2015]. Many of the applications already use and some even require using CityGML.

In the CityGML CM, all 3D city objects can easily be enriched with thematic data. For example,
street objects can be enriched with information about traffic density, speed limit, number of lanes
etc., or buildings can be enriched by information on the heating and electrical energy demand,
numbers of households and inhabitants, the appraised building value etc. Even building parts such
as individual roof or wall surfaces can be enriched with information e.g. about solar irradiation
and thermal insulation parameters. For many application domains specific extensions of the
CityGML CM have already been created (cf. Biljecki et al. 2018).

7.1. Modularization
The CityGML Conceptual Model provides models for the most important types of objects within
virtual 3D city and landscape models. These feature types have been identified to be either
required or important in many different application areas. However, implementations are not
required to support the complete CityGML model in order to be conformant to the standard.
Implementations may employ a subset of constructs according to their specific information needs.
For this purpose, modularisation is applied to the CityGML CM.

22

Figure 3. CityGML 3.0 module overview. The vertical boxes show the different thematic modules. Horizontal
modules specify concepts that are applicable to all thematic modules.

The CityGML conceptual model is thematically decomposed into a Core module and different kinds
of extension modules as shown in Figure 3. The Core module (shown in green) comprises the basic
concepts and components of the CityGML CM and, thus, must be implemented by any conformant
system. Each red colored module covers a specific thematic field of virtual 3D city models.

The CityGML CM introduces the following eleven thematic extension modules: Building, Bridge,
Tunnel, Construction, CityFurniture, CityObjectGroup, LandUse, Relief, Transportation, Vegetation,
and WaterBody. All three modules Building, Bridge, and Tunnel model civil structures and share
common concepts that are grouped within the Construction module. The five blue colored
extension modules add specific modelling aspects that can be used in conjunction with all thematic
modules:

• The Appearance module contains the concepts to represent appearances (like textures and
colours) of city objects.

• The PointCloud module provides concepts to represent the geometry of city objects by 3D point
clouds.

• The Generics module defines the concepts for generic objects, attributes, and relationships.

• Versioning adds concepts for the representation of concurrent versions, real world object
histories and feature histories.

• The Dynamizer module contains the concepts to represent city object properties by time series
data and to link them with sensors, sensor data services or external files.

Each CityGML encoding can specify support for a subset of the CityGML modules only. If a module
is supported by an encoding, then all concepts should be mapped. However, the encoding
specification can define so-called null mappings to restrict the use of specific elements of the
conceptual model in an encoding. Null mappings can be expressed in an encoding specification for
individual feature types, properties, and associations defined within a CityGML module. This means
that the corresponding element will not be included in the respective encoding.

23

Note that also CityGML applications do not have to support all modules. Applications can also
decide to only support a specific subset of CityGML modules. For example, when an application
only has to work with building data, only the modules Core, Construction, and Building would have
to be supported.

7.2. General Modelling Principles

7.2.1. Semantic Modelling of Real-World Objects

Real-world objects are represented by geographic features according to the definition in ISO 19109.
Geographic features of the same type (e.g. buildings, roads) are modelled by corresponding feature
types that are represented as classes in the Conceptual Model (CM). The objects within a 3D city
model are instances of the different feature types.

In order to distinguish and reference individual objects, each object has unique identifiers. In the
CityGML 3.0 CM, each geographic feature has the mandatory featureID and an optional identifier
property. The featureID is used to distinguish all objects and possible multiple versions of the same
real-world object. The identifier is identical for all versions of the same real-world object and can be
used to reference specific objects independent from their actual object version. The featureID is
unique within the same CityGML dataset, but it is generally recommended to use globally unique
identifiers like UUID values or identifiers maintained by an organization such as a mapping agency.
Providing globally unique and stable identifiers for the identifier attribute is recommended. This
means these identifiers should remain stable over the lifetime of the real-world object.

CityGML feature types typically have a number of spatial and non-spatial properties (also called
attributes) as well as relationships with other feature or object types. Note that a single CityGML
object can have different spatial representations at the same time. For example, different geometry
objects representing the feature’s geometry in different levels of detail or as different spatial
abstractions.

Many attributes have simple, scalar values like a number or a character string. However, some
attributes are complex. They do not just have a single property value. In CityGML the following
types of complex attributes occur:

• Qualified attribute values: For example, a measure consists of the value and a reference to the
unit of measure, or e.g. for relative and absolute height levels the reference level has to also be
named.

• Code list values: A code list is a form of enumeration where the valid values are defined in a
separate register. The code list values consist of a link or identifier for the register as well as the
value from that register which is being used.

• Attributes consisting of a tuple of different fields and values: For example, addresses, space
occupancy, and others

• Attribute value consisting of a list of numbers: For example, representing coordinate lists or
matrices

In order to support feature history, CityGML 3.0 introduces bitemporal timestamps for all objects. In
CityGML 2.0, the attributes creationDate and terminationDate are supported. These refer to the time

24

period in which a specific version of an object is an integral part of the 3D city model. In 3.0, all
features can now additionally have the attributes validFrom and validTo. These represent the
lifespan a specific version of an object has in the real-world. Using these two time intervals a
CityGML dataset could be queried both for how did the city look alike at a specific point in time as
well as how did the city model look at that time.

The combination of the two types of feature identifiers and bitemporal timestamps enables
encoding not only the current version of a 3D city model, but also the model’s entire history can be
represented in CityGML and possibly exchanged within a single file.

7.2.2. Class Hierarchy and Inheritance of Properties and Relations

In CityGML, the specific feature types like Building, Tunnel, or WaterBody are defined as subclasses
of more general higher-level classes. Hence, feature types build a hierarchy along specialization /
generalization relationships where more specialized feature types inherit the properties and
relationships of all their superclasses along the entire generalization path to the topmost feature
type AnyFeature.

Note: A superclass is the class from which subclasses can be created.

7.2.3. Relationships between CityGML objects

In CityGML, objects can be related to each other and different types of relations are distinguished.
First of all, complex objects like buildings or transportation objects typically consist of parts. These
parts are individual features of their own, and can even be further decomposed. Therefore,
CityGML objects can form aggregation hierarchies. Some feature types are marked in the
conceptual model with the stereotype «TopLevelFeatureType». These constitute the main objects of a
city model and are typically the root of an aggregation hierarchy. Only top-level features are
allowed as direct members of a city model. The information about which feature types belong to
the top level is required for software packages that want to filter imports, exports, and
visualizations according to the general type of a city object (e.g. only show buildings, solitary
vegetation objects, and roads). CityGML Application Domain Extensions should also make use of
this concept, such that software tools can learn from inspecting their conceptual schema what are
the main, i.e. the top-level, feature types of the extension.

Some relations in CityGML are qualified by additional parameters, typically to further specify the
type of relationship. For example, a relationship can be qualified with a URI pointing to a definition
of the respective relation type in an Ontology. Qualified relationships are used in CityGML, among
others, for:

• General relationships between features – association relatedTo between city objects,

• User-defined aggregations using CityObjectGroup. This relation allows also for recursive
aggregations,

• External references – linking of city objects with corresponding entities from external resources
like objects in a cadastre or within a BIM dataset.

The CityGML CM contains many relationships that are specifically defined between certain feature
types. For example, there is the boundary relationship from 3D volumetric objects to its

25

thematically differentiated 3D boundary surfaces. Another example is the generalizesTo relation
between feature instances that represent objects on different generalisation levels.

In the CityGML 3.0 CM there are new associations to express topologic, geometric, and semantic
relations between all kinds of city objects. For example, information that two rooms are adjacent or
that one interior building installation (like a curtain rail) is overlapping with the spaces of two
connected rooms can be expressed. The CM also enables documenting that two wall surfaces are
parallel and two others are orthogonal. Also distances between objects can be represented
explicitly using geometric relations. In addition to spatial relations logical relations can be
expressed.

7.2.4. Definition of the Semantics for all Classes, Properties, and Relations

The meanings of all elements defined in the CityGML conceptual model are normatively specified
in the data dictionary in Chapter 9.

7.3. Representation of Spatial Properties

7.3.1. Geometry and Topology

Spatial properties of all CityGML feature types are represented using the geometry classes defined
in ISO 19107. Spatial representations can have 0-, 1-, 2-, or 3-dimensional extents depending on the
respective feature type and Levels of Detail (LOD; the LOD concept is discussed in Section 7.4.4 and
Section 8.2.5). With only a few exceptions, all geometries must use 3D coordinate values. Besides
primitive geometries like single points, curves, surfaces, and solids, CityGML makes use of different
kinds of aggregations of geometries like spatial aggregates (MultiPoint, MultiCurve, MultiSurface,
MultiSolid) and composites (CompositeCurve, CompositeSurface, CompositeSolid). Volumetric shapes
are represented in ISO 19107 according to the so-called Boundary Representation (B-Rep, for
explanation see Foley et al. 2002) only.

The CityGML Conceptual Model does not put any restriction on the usage of specific geometry types
as defined in ISO 19107. For example, 3D surfaces could be represented in a dataset using 3D
polygons or 3D meshes such as triangulated irregular networks (TINS) or by non-uniform rational
B-spline surfaces (NURBS). However, an encoding may restrict the usage of geometry types. For
example, curved lines like B-splines or clothoids, or curved surfaces like NURBS could be disallowed
by explicitly defining null encodings for these concepts in the encoding specification (c.f. Section 7.1
above).

Note that the conceptual schema of ISO 19107 allows composite geometries to be defined by a
recursive aggregation for every primitive type of the corresponding dimension. This aggregation
schema allows the definition of nested aggregations (hierarchy of components). For example, a
building geometry (CompositeSolid) can be composed of the house geometry (CompositeSolid) and
the garage geometry (Solid), while the house’s geometry is further decomposed into the roof
geometry (Solid) and the geometry of the house body (Solid). This is illustrated in Figure 4.

26

Figure 4. Recursive aggregation of objects and geometries in CityGML (graphic: IGG Uni Bonn).

While the CityGML Conceptual Model does not employ the topology classes from ISO 19107,
topological relations between geometries can be established by sharing geometries (typically parts
of the boundary) between different geometric objects. One part of real-world space can be
represented only once by a geometry object and is referenced by all features or more complex
geometries which are defined or bounded by this geometry object. Thus redundancy can be
avoided and explicit topological relations between parts are maintained.

Basically, there are three cases for sharing geometries:

• First, two different semantic objects may be spatially represented by the same geometry object.
For example, if a foot path is both a transportation feature and a vegetation feature, the surface
geometry defining the path is referenced by both the transportation object and by the
vegetation object.

• Second, a geometry object may be shared between a feature and another geometry. For
example, a geometry defining a wall of a building may be referenced twice: By the solid
geometry defining the geometry of the building, and by the wall feature.

• Third, two geometries may reference the same geometry, which is in the boundary of both. For
example, a building and an adjacent garage may be represented by two solids. The surface
describing the area where both solids touch may be represented only once and it is referenced
by both solids. As it can be seen from Figure 4, this requires partitioning of the respective
surfaces.

In general, B-Rep only considers visible surfaces. However, to make topological adjacency explicit
and to allow the possibility of deletion of one part of a composed object without leaving holes in the
remaining aggregate, touching elements are included. Whereas touching is allowed, permeation of
objects is not in order to avoid the multiple representation of the same space.

Another example of sharing geometry objects that are members of the boundaries in different
higher-dimensional geometry objects is the sharing of point geometries or curve geometries, which
make up the outer and inner boundaries of a polygon. This means that each point is only
represented once, and different polygons could reference this point geometry. The same applies to
the representation of curves for transportation objects like roads, whose end points could be shared
such as between different road segments to topologically connect them.

27

Note that the use of topology in CityGML datasets by sharing geometries is optional. Furthermore,
an encoding of the CityGML conceptual model might restrict the usage of shared geometries. For
example, it might only be allowed to share identical (support) points from different 3D polygons or
only entire polygons can be shared between touching solids (like shown in Figure 4).

7.3.2. Prototypic Objects / Scene Graph Concepts

In CityGML, objects of equal shape like trees and other vegetation objects, traffic lights and traffic
signs can be represented as prototypes which are instantiated multiple times at different locations
(see Figure 5). The geometry of prototypes is defined in local coordinate systems. Every instance is
represented by a reference to the prototype, a base point in the world coordinate reference system
(CRS) and a transformation matrix that facilitates scaling, rotation, and translation of the prototype.
The principle is adopted from the concept of scene graphs used in computer graphics standards.
Since the ISO 19107 geometry model does not provide support for scene graph concepts, the
CityGML class ImplicitGeometry has been introduced (for further description see Section 8.2.5). The
prototype geometry can be represented using ISO 19107 geometry objects or by referencing an
external file containing the geometry in another data format.

Figure 5. Examples of prototypic shapes (source: Rheinmetall Defence Electronics).

7.3.3. Point Cloud Representation

In addition to the spatial representations defined in the Core module, the geometry of physical
spaces and of thematic surfaces can now also be provided by 3D point clouds using MultiPoint
geometry. This allows, for example, spatially representing the building hull, a room within a
building or a single wall surface just by a point cloud. All thematic feature types including
transportation objects, vegetation, city furniture, etc. can also be spatially represented by point
clouds. In this way, the ClearanceSpace of a road or railway could, for instance, be modelled
directly from the result of a mobile laser scanning campaign. Point clouds can either be included in
a CityGML dataset or just reference an external file of some common types such as LAS or LAZ.

28

7.3.4. Coordinate Reference Systems (CRS)

CityGML is about 3D city and landscape models. This means that nearly all geometries use 3D
coordinates, where each single point and also the points defining the boundaries of surfaces and
solids have three coordinate values (x,y,z) each. Coordinates always have to be given with respect to
a coordinate reference system (CRS) that relates them unambiguously with a specific position on
the Earth. In contrast to CAD or BIM, each 3D point is absolutely georeferenced, which makes
CityGML especially suitable to represent geographically large extended structures like airports,
railways, bridges, dams, where the Earth curvature has a significant effect on the object’s geometry
(for further explanations see Kaden & Clemen 2017).

In most CRS, the (x,y) coordinates refer to the horizontal position of a point on the Earth’s surface.
The z coordinate typically refers to the vertical height over (or under) the reference surface. Note
that depending on the chosen CRS, x and y may be given as angular values like latitude and
longitude or as distance values in meters or feet. According to ISO 19111, numerous 3D CRS can be
used. This includes global as well as national reference systems using geocentric, geodetic, or
projected coordinate systems.

7.4. CityGML Core Model: Space Concept, Levels of
Detail, Special Spatial Types

7.4.1. Spaces and Space Boundaries

In the CityGML 3.0 Conceptual Model, a clear semantic distinction of spatial features is introduced
by mapping all city objects onto the semantic concepts of spaces and space boundaries. A Space is
an entity of volumetric extent in the real world. Buildings, water bodies, trees, rooms, and traffic
spaces are examples for such entities with volumetric extent. A Space Boundary is an entity with
areal extent in the real world. Space Boundaries delimit and connect Spaces. Examples are the wall
surfaces and roof surfaces that bound a building, the water surface as boundary between the water
body and air, the road surface as boundary between the ground and the traffic space, or the digital
terrain model representing the space boundary between the over- and underground space.

To obtain a more precise definition of spaces, they are further subdivided into physical spaces and
logical spaces. Physical spaces are spaces that are fully or partially bounded by physical objects.
Buildings and rooms, for instance, are physical spaces as they are bounded by walls and slabs.
Traffic spaces of roads are physical spaces as they are bounded by road surfaces against the
ground. Logical spaces, in contrast, are spaces that are not necessarily bounded by physical objects,
but are defined according to thematic considerations. Depending on the application, logical spaces
can also be bounded by non-physical, i.e. virtual boundaries, and they can represent aggregations
of physical spaces. A building unit, for instance, is a logical space as it aggregates specific rooms to
flats, the rooms being the physical spaces that are bounded by wall surfaces, whereas the
aggregation as a whole is being delimited by a virtual boundary. Other examples are city districts
which are bounded by virtual vertically extruded administrative boundaries, public spaces vs.
Security zones in airports, or city zones with specific regulations stemming from urban planning.
The definition of physical and logical spaces and of corresponding physical and virtual boundaries
is in line with the discussion in [Smith & Varzi 2000] on the difference between bona fide and fiat
boundaries to bound objects. Bona fide boundaries are physical boundaries; they correspond to the

29

physical boundaries of physical spaces in the CityGML 3.0 CM. In contrast, fiat boundaries are man-
made boundaries. They are equivalent to the virtual boundaries of logical spaces.

Physical spaces, in turn, are further classified into occupied spaces and unoccupied spaces.
Occupied spaces represent physical volumetric objects that occupy space in the urban
environment. Examples for occupied spaces are buildings, bridges, trees, city furniture, and water
bodies. Occupying space means that some space is blocked by these volumetric objects. For
instance, the space blocked by the building in Figure 6 cannot be used any more for driving through
this space or placing a tree on that space. In contrast, unoccupied spaces represent physical
volumetric entities that do not occupy space in the urban environment, i.e. no space is blocked by
these volumetric objects. Examples for unoccupied spaces are building rooms and traffic spaces.
There is a risk of misunderstanding the term OccupiedSpace. However, we decided to use the term
anyway, as it is established in the field of robotics for over three decades [Elfes 1989]. The
navigation of mobile robots makes use of a so-called occupancy map that marks areas that are
occupied by matter and, thus, are not navigable for robots.

Figure 6. Occupied and unoccupied spaces

The new space concept offers several advantages:

• In the CityGML 3.0 Conceptual Model, all geometric representations are only defined in the Core
module. This makes (a) models of the thematic modules simpler as they no longer need to be
associated directly with the geometry classes, and (b) implementation easier as all spatial
concepts have only to be implemented once in the Core module. All thematic modules like
Building, Relief, WaterBody, etc. inherit their geometric representations from the Core module.

• The space concept supports the expression of explicit topological, geometrical, and thematic
relations between spaces and spaces, spaces and space boundaries, and space boundaries and
space boundaries. Thus, implementing the checking of geometric-topological consistency will
become easier. That is because most checks can be expressed and performed on the CityGML
Core module and then automatically applied to all thematic modules

• For the analysis of navigable spaces (e.g. to generate IndoorGML data from CityGML) algorithms
can be defined on the level of the Core module. These algorithms will then work with all
CityGML feature classes and also ADEs as they are derived from the Core. The same is true for
other applications of 3D city models listed in [Biljecki et al. 2015] such as visibility analyses

30

including shadow casting or solar irradiation analyses.

• Practitioners and developers do not see much of the space concept. That is because the space
and space boundary classes are just abstract classes. Only elements representing objects from
concrete subclasses such as Building, BuildingRoom, or TrafficSpace will appear in CityGML
data sets.

7.4.2. Modelling City Objects by the Composition of Spaces

Semantic objects in CityGML are often composed of parts, i.e. they form multi-level aggregation
hierarchies. This also holds for semantic objects representing occupied and unoccupied spaces. In
general, two types of compositions can be distinguished:

1. Spatial partitioning: Semantic objects of either the space type OccupiedSpace or
UnoccupiedSpace are subdivided into different parts that are of the same space type as the
parent object. Examples are Buildings that can be subdivided into BuildingParts, or Buildings
that are partitioned into ConstructiveElements. Buildings as well as BuildingParts and
constructiveElements represent OccupiedSpaces. Similarly, Roads can be subdivided into
TrafficSpaces and AuxiliaryTrafficSpaces, all objects being UnoccupiedSpaces.

2. Nesting of alternating space types: Semantic objects of one space type contain objects that are
of the opposite space type as the parent object. Examples are Buildings (OccupiedSpace) that
contain BuildingRooms (UnoccupiedSpace), BuildingRooms (UnoccupiedSpace) that contain
Furniture (OccupiedSpace), and Roads (UnoccupiedSpace) that contain CityFurniture
(OccupiedSpace). The categorization of a semantic object into occupied or unoccupied takes
place at the level of the object in relation to the parent object. A building is part of a city model.
Thus, in the first place the building occupies urban space within a city. As long as the interior of
the building is not modelled in detail, the space covered by the building needs to be considered
as occupied and only viewable from the outside. To make the building accessible inside, voids
need to be added to the building in the form of building rooms. The rooms add free space to the
building interior. In other words, the OccupiedSpace now contains some UnoccupiedSpace. The
free space inside the building can, in turn, contain objects that occupy space again, such as
furniture or installations. In contrast, roads also occupy urban space in the city. However, this
space is initially unoccupied as it is accessible by cars, pedestrian, or cyclists. Adding traffic
signs or other city furniture objects to the free space results in specific sections of the road
becoming occupied by these objects. Thus, one can also say that occupied spaces are mostly
filled with matter; whereas, unoccupied spaces are mostly free of matter and, thus, realize free
spaces.

7.4.3. Rules for Surface Orientations of OccupiedSpaces and
UnoccupiedSpaces

The classification of feature types into OccupiedSpace and UnoccupiedSpace also defines the
semantics of the geometries attached to the respective features. For OccupiedSpaces, the attached
geometries describe volumes that are (mostly) physically occupied. For UnoccupiedSpaces, the
attached geometries describe (or bound) volumes that are (mostly) physically unoccupied. This also
has an impact on the required orientation of the surface normal (at point P this is a vector
perpendicular to the tangent plane of the surface at P) for attached thematic surfaces. For
OccupiedSpaces, the normal vectors of thematic surfaces must point in the same direction as the

31

surfaces of the outer shell of the volume. For UnoccupiedSpaces, the normal vectors of thematic
surfaces must point in the opposite direction as the surfaces of the outer shell of the volume. This
means that from the perspective of an observer of a city scene, the surface normals must always be
directed towards the observer. In the case of OccupiedSpaces (e.g. Buildings, Furniture), the
observer must be located outside the OccupiedSpace for the surface normals being directed
towards the observer; whereas in the case of UnoccupiedSpaces (e.g. Rooms, Roads), the observer is
typically inside the UnoccupiedSpace.

7.4.4. Levels of Detail (LOD)

The CityGML Conceptual Model differentiates four consecutive Levels of Detail (LOD 0-3), where
objects become more detailed with increasing LOD with respect to their geometry. CityGML
datasets can - but do not have to - contain multiple geometries for each object in different LODs
simultaneously. The LOD concept facilitates multi-scale modelling; i.e. having varying degrees of
spatial abstractions that are appropriate for different applications or visualizations.

The classification of real-world objects into spaces and space boundaries is solely based on the
semantics of these objects and not on their used geometry type, as the CityGML 3.0 CM allows
various geometrical representations for objects. A building, for instance, can be spatially
represented by a 3D solid (e.g. in LOD1), but at the same time, the real-world geometry can also be
abstracted by a single point, footprint or roof print (LOD0), or by a 3D mesh (LOD3). The outer shell
of the building may also be semantically decomposed into wall, roof, and ground surfaces. Figure 7
shows different representations of the same real-world building object in different geometric LODs
(and appearances).

Figure 7. Representation of the same real-world building in the Levels of Detail 0-3.

The biggest changes between CityGML 3.0 and earlier versions are that:

1. LOD4 was dropped, because now all feature types can have outdoor and indoor elements in
LODs 0-3 (for those city objects where it makes sense like buildings, tunnels, or bridges). This
means that the outside shell such as of a building, could be spatially represented in LOD2 and
the indoor elements like rooms, doors, hallways, stairs etc. in LOD1. CityGML can now be used
to represent building floor plans, which are LOD0 representations of building interiors (cf.
Konde et al. 2018). It is even possible to model the outside shell of a building in LOD1, while
representing the interior structure in LOD2 or 3. Figure 8 shows different indoor/outdoor
representations of a building. Details on the changes to the CityGML LOD concept are provided
in [Löwner et al. 2016].

2. Levels of Detail are no longer associated with the degree of semantic decomposition of city
objects and refer to the spatial representations only. This means that, for example, buildings can
have thematic surfaces (like WallSurface, GroundSurface) also in LODs 0 and 1 and windows

32

and doors can be represented in all LODs 0-3. In CityGML 2.0 or earlier thematic surfaces were
only allowed starting from LOD2, openings like doors and windows starting from LOD3, and
interior rooms and furniture only in LOD4.

3. In the CityGML 3.0 Conceptual Model the geometry representations were moved from the
thematic modules to the Core module and are now associated with the semantic concepts of
Spaces and Space Boundaries. This led to a significant simplification of the models of the
thematic modules. Since all feature types in the thematic modules are defined as subclasses of
the space and space boundary classes, they automatically inherit the geometry classes and, thus,
no longer require direct associations with them. This also led to a harmonized LOD
representation over all CityGML feature types.

4. If new feature types are defined in Application Domain Extensions (ADEs) based on the abstract
Space and Space Boundary classes from the Core module, they automatically inherit the spatial
representations and the LOD concept.

Figure 8. Floor plan representation (LOD0) of a building (left), combined LOD2 indoor and outdoor
representation (right). Image adopted from Löwner et al. 2016.

Spaces and all its subclasses like Building, Room, and TrafficSpace can now be spatially represented
by single points in LOD0, multi-surfaces in LOD0/2/3, solids in LOD1/2/3, and multi-curves in
LOD2/3. Space Boundaries and all its subclasses such as WallSurface, LandUse, or Relief can now be
represented by multi-surfaces in LOD0/2/3 and as multi-curves in LOD2/3. See Section 8.2.5 for
further details on the different Levels of Detail.

7.4.5. Closure Surfaces

Objects, which are not spatially represented by a volumetric geometry, must be virtually closed in
order to compute their volume (e.g. pedestrian underpasses or airplane hangars). They can be
sealed using a specific type of space boundary called a ClosureSurface. These are virtual surfaces.
They are used when a closed surface is needed to compute volumes or perform similar 3D
operations. Since they do not actually exist, they are neglected when they are not needed or not
appropriate. For example, ClosureSurfaces would not be used in visualizations.

The concept of ClosureSurface can also be employed to model the entrances of subsurface objects.
Those objects like tunnels or pedestrian underpasses have to be modelled as closed solids in order
to compute their volume. An example would be for use in flood simulations. The entrances to
subsurface objects also have to be sealed to avoid holes in the digital terrain model (see Figure 9).
However, in close-range visualizations the entrance should be treated as open. Thus, closure

33

surfaces are an adequate way to model those entrances.

Figure 9. Closure surfaces to seal open structures. Passages are subsurface objects (left). The entrance is
sealed by a virtual ClosureSurface feature, which is both part of the DTM and the subsurface object (right)
(graphic: IGG Uni Bonn).

7.4.6. Terrain Intersection Curves

An important issue in city modelling is the integration of 3D objects and the terrain. Problems arise
if 3D objects float over or sink into the terrain. This is particularly the case when terrains and 3D
objects in different LODs are combined, when the terrain and 3D models are updated
independently from each other, or when they come from different data providers [Kolbe & Gröger
2003]. To overcome this problem, the TerrainIntersectionCurve (TIC) of a 3D object is introduced.
These curves denote the exact position where the terrain touches the 3D object (see Figure 10). TICs
can be applied to all CityGML feature types that are derived from AbstractPhysicalSpace such as
buildings, bridges, tunnels, but also city furniture, vegetation, and generic city objects.

If, for example, a building has a courtyard, the TIC consists of two closed rings: One ring
representing the courtyard boundary, and one which describes the building’s outer boundary. This
information can be used to integrate the building and a terrain by ‘pulling up’ or ‘pulling down’ the
surrounding terrain to fit the TerrainIntersectionCurve. The digital terrain model (DTM) may be
locally warped to fit the TIC. By this means, the TIC also ensures the correct positioning of textures
or the matching of object textures with the DTM. Since the intersection with the terrain may differ
depending on the LOD, a 3D object may have different TerrainIntersectionCurves for all LODs.

Figure 10. TerrainIntersectionCurve for a building (left, black) and a tunnel object (right, red). The tunnel’s
hollow space is sealed by a triangulated ClosureSurface (graphic: IGG Uni Bonn).

34

7.4.7. Coherent Semantical-Geometrical Modelling

An important design principle for CityGML is the coherent modelling of semantic objects and their
spatial representations. At the semantic level, real-world entities are represented by features, such
as buildings, walls, windows, or rooms. The description also includes attributes, relations and
aggregation hierarchies (part-whole-relations) between features. Thus the part-of-relationship
between features can be derived at the semantic level only, without considering geometry.
However, at the spatial level, geometry objects are assigned to features representing their spatial
location, shape, and extent. So the model consists of two hierarchies: The semantic and the
geometrical in which the corresponding objects are linked by relationships (cf. Stadler & Kolbe
2007). The advantage of this approach is that it can be navigated in both hierarchies and between
both hierarchies arbitrarily, for answering thematic and/or geometrical queries or performing
analyses.

If both hierarchies exist for a specific object, they must be coherent (i.e. it must be ensured that
they match and fit together). For example, if a building is semantically decomposed into wall
surfaces, roof surfaces and so forth, the polygons representing these thematic surfaces (in a specific
LOD) must be part of the solid geometry representing the entire building (for the same LOD).

7.5. Appearances
In addition to semantics and geometry, information about the appearance of surfaces, i.e.
observable properties of the surface, is considered an integral part of virtual 3D city and landscape
models. Appearance relates to any surface-based theme such as infrared radiation or noise
pollution, not just visual properties like RGB texture images. Consequently, data provided by
appearances can be used as input for both, presentation of and analysis in virtual 3D city models.

The CityGML Conceptual Model supports feature appearances for an arbitrary number of themes
per city model. Each LOD of a feature can have an individual appearance. Appearances can
represent – among others – textures and georeferenced textures. CityGML’s appearance model is
packaged within the Appearance module (cf. Section 8.3).

7.6. Modelling Dynamic Data
In general, city objects can have properties related to their geometry, topology, semantics, and
appearance. All of these properties may change over time. For example, a construction event leads
to the change in geometry of a building (i.e. addition of a new building floor or demolition of an
existing door). The geometry of an object can be further classified according to its shape, location,
and extent, which can also change over time. A moving car object involves changing only the
location of the car object. However, a flood incident involves variations in the location and shape of
water. There might be other properties, which change with respect to thematic data of city objects
such as hourly variations in energy or gas consumption of a building or changing the building
usage from residential to commercial. Some properties involve changes in appearances over a time
period, such as building textures changing over years or traffic cameras recording videos of moving
traffic over definite intervals. 3D city models also represent interrelationships between objects and
relations may change over time as well. Hence, it is important to consider that the representation of
time-varying data is required to be associated with these different properties. A detailed discussion
on the requirements of city model applications regarding the support of dynamic data is given in

35

[Chaturvedi & Kolbe 2019].

The CityGML 3.0 Conceptual Model introduces two concepts to manage dynamic, time-dependent,
properties of city models. The Versioning module manages changes that are slower in nature.
Examples are (1) the history or evolution of cities such as construction or demolition of buildings,
and (2) managing multiple versions of the city models.

The Dynamizer module manages higher-frequency or dynamic variations of object properties,
including variations of (1) thematic attributes such as changes of physical quantities (energy
demands, temperature, solar irradiation levels), (2) spatial properties such as change of a feature’s
geometry, with respect to shape and location (moving objects), and (3) real-time sensor
observations. The Dynamizer module allows establishing explicit links from city objects to sensors
and sensor data services.

7.6.1. Versioning and Histories

As described in Section 7.2.1, the bitemporal timestamps of all CityGML feature types allow
representing the evolution of the real city and its model over time. The new Versioning module
extends this concept by the possibility of representing multiple, concurrent versions of the city
model. For that purpose, the module defines two new feature types: 1) Version, which can be used
to explicitly define named states of the 3D city model and denote all the specific versions of objects
belonging to such states. 2) VersionTransition, which allows to explicitly link different versions of
the 3D city model by describing the reason of change and the modifications applied. Details on the
versioning concept are given in [Chaturvedi et al. 2015].

This approach not only facilitates the explicit representation of different city model versions, but
also allows distinguishing and referring to different versions of city objects in an interoperable
exchange format. All object versions could be stored and exchanged within a single dataset.
Software systems could use such a dataset to visualize and work with the different versions
simultaneously. The conceptual model also takes into account the management of multiple histories
or multiple interpretations of the past of a city, which is required when looking at historical city
developments and for archaeological applications. In addition, the Versioning module supports
collaborative work. All functionality to represent a tree of workspaces as version control systems
like git or SVN is provided. The Versioning module handles versions and version transitions as
feature types, which allows the version management to be completely handled using the standard
OGC Web Feature Service [Vrenatos 2010]. No extension of the OGC Web Feature Service standard is
required to manage the versioning of city models.

7.6.2. Dynamizers: Using Time-Series Data for Object Attributes

The new Dynamizer module improves the usability of CityGML for different kinds of simulations as
well as to facilitate the integration of devices from the Internet-of-Things (IoT) like sensors with 3D
city models. Both, simulations and sensors provide dynamic variations of some measured or
simulated properties such as the electricity consumption of a building or the traffic density within a
road segment. The variations of the value are typically represented using time-series data. The data
sources of the time-series data could be either sensor observations (e.g. from a smart meter), pre-
recorded load profiles (e.g. from an energy company), or the results of some simulation run.

36

Figure 11. Dynamizers link timeseries data coming from different sources to specific properties of
individual city objects.

As shown in Figure 11, Dynamizers serve three main purposes:

1. Dynamizer is a data structure to represent dynamic values in different and generic ways. Such
dynamic values may be given by (1) tabulation of time/value pairs using its AtomicTimeseries
class, (2) patterns of time/value pairs based on statistical rules using its CompositeTimeseries
class, and (3) retrieving observations directly from external sensor/IoT services using its
SensorConnection class. The values can be obtained from sensor services such as the OGC Sensor
Observation Service or OGC SensorThings API, simulation specific databases, and also external
files such as CSV or Excel sheets.

2. Dynamizer delivers a method to enhance static city models by adding dynamic property values.
A Dynamizer references a specific property (e.g. spatial, thematic or appearance properties) of a
specific object within a 3D city model providing dynamic values overriding the static value of
the referenced object attribute.

3. Dynamizer objects establish explicit links between sensor/observation data and the respective
properties of city model objects that are measured by them. By making such explicit links with
city object properties, the semantics of sensor data become implicitly defined by the city model.

Dynamizers are used to inject dynamic variations of city object properties into an otherwise static
representation. The advantage in following such an approach is that it allows only selected
properties of city models to be made dynamic. If an application does not support dynamic data, the
application simply does not allow/include these special types of features.

Dynamizers have already been implemented as an Application Domain Extension (ADE) for
CityGML 2.0 and were employed in the OGC Future City Pilot Phase 1. More details about

37

Dynamizers are given in [Chaturvedi & Kolbe 2017].

7.7. Extending CityGML
CityGML is designed as a universal information model that defines object types and attributes
which are useful for a broad range of applications. In practical applications, the objects within
specific 3D city models will most likely contain attributes which are not explicitly modelled in
CityGML. Moreover, there might be 3D objects which are not covered by the CityGML CM thematic
classes. The CityGML CM provides three different concepts to support the exchange of such data:

1. Generic objects and attributes,

2. Application Domain Extensions, and

3. Code lists.

The concept of generic objects and attributes enables the runtime extensions of CityGML
applications. This means that any city object may be augmented by additional attributes and
relations, whose names, data types, and values can be provided by a running application without
requiring extensions to the CityGML conceptual schema and the respective encodings. Similarly,
features not represented by the predefined thematic classes of the CityGML conceptual model may
be modelled and exchanged using generic objects. The generic extensions of CityGML are provided
by the Generics module (cf. Section 8.7).

Application Domain Extensions (ADE) specify additions to the CityGML conceptual model. Such
additions comprise the introduction of new properties to existing CityGML feature types such as the
energy demand of a building or the definition of additional feature types. The difference between
ADEs and generic objects and attributes is, that an ADE has to be defined in an extra conceptual
schema (provided in UML) with its own namespace. Encodings have to be extended accordingly.
The advantage of this approach is that the extension is formally specified. Extended CityGML
datasets can be validated against the CityGML CM and the respective ADE schema. ADEs can be
defined (and even standardized) by information communities which are interested in specific
application fields. More than one ADE can be used simultaneously in the same dataset. Examples
for popular ADEs are the Utility Network ADE [Becker et al. 2011; Kutzner et al. 2018] and the
Energy ADE [Nouvel et al. 2015; Agugiaro et al. 2018]. A comprehensive overview of CityGML ADEs
is given in [Biljecki et al. 2018]. Further details on ADEs are given in Chapter 10.

CityGML can also be extended with regard to the allowed values specified in code lists. Many
attributes of CityGML types use a code list as a data type such as, for instance, the attributes class,
usage, and function of city objects. A code list defines a value domain including a code for each
permissible value. In contrast to fixed enumerations, modifications and extensions to the value
domain become possible with code lists. The values for all code lists in CityGML have to be defined
externally. This could, for example, be by adopting classifications from global, national, or
industrial standards.

Additional information about the extension features of CityGML can be found in the CityGML 3.0
Users Guide.

38

http://docs.opengeospatial.org/DRAFTS/20-066.html
http://docs.opengeospatial.org/DRAFTS/20-066.html

Chapter 8. CityGML UML Model
The CityGML UML model is the normative definition of the CityGML Conceptual Model. The tables
and figures in this section were software generated from the UML model. As such, this section
provides a normative representation of the CityGML Conceptual Model.

An alternate representation can be found in the Data Dictionary in Chapter 9.

8.1. Structural Overview of Requirements Classes
The Requirements Classes for this standard are structured as UML Packages as illustrated in Figure
12. Each Requirements Class is specified in detail in their respective subsections. These subsections
include a UML diagram, data dictionary, and the applicable requirements.

Figure 12. CityGML UML Packages

39

8.2. Core

Requirements Class

http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-core

Target type Implementation Specification

Dependency ISO 19103:2015

Dependency ISO 19107:2003

Dependency ISO 19109:2015

Dependency ISO 19111:2019

Dependency ISO 19123:2005

Dependency OASIS xAL v3.0

The CityGML Core module defines the basic concepts and components of city models. This rather
large body of work is divided into seven sections. These sections build on each other from the
fundamental principles specified by the relevant ISO standards up to the full CityGML model. These
sections are summarized in Table 3.

Table 3. CityGML Core Sections

The Use of ISO Standards Describes the use of the ISO 19100 series of
International Standards to provide a
foundation to the CityGML model.

City Models and City Objects Defines the basic building blocks of the
CityGML model.

Space Concept Defines the concepts of space as used in the
CityGML model.

Geometry and LOD Defines the geometry and Levels Of Detail
concepts.

CityGML Core Model Presents the complete Core model.

Types, Enumerations, and Codelist Defines the little things which make this
model work.

8.2.1. Requirements

The CityGML Core defines technology-agnostic concepts. These concepts are then realized in
technology-specific Implementation Specifications. The following requirements govern the creation
of any CityGML compliant Implementation Specification (IS).

Requirement 1 /req/core/classes

For each UML class defined or referenced in the Core Package:

40

http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-core

A The Implementation Specification SHALL contain an element
which represents the same concept as that defined for the UML
class.

B The Implementation Specification SHALL represent associations
with the same source, target, direction, roles, and multiplicities as
those of the UML class.

C The implementation Specification SHALL represent the attributes
of the UML class including the name, definition, type, and
multiplicity.

D The implementation Specification SHALL represent the attributes
of all superclasses of the UML class including the name,
definition, type, and multiplicity.

E The implementation Specification SHALL represent the
associations of all superclasses of the UML class including the
source, target, direction, roles, and multiplicity.

F The Implementation Specification SHALL specify how an
implementation observes all constraints the Conceptual Model
imposes on the UML class.

While the CityGML Conceptual Model builds on ISO Standards, there are some restrictions on the
use of those standards.

Requirement 2 /req/Core/isorestrictions

ISO classes used in the CityGML Conceptual Model are subject to the following
restrictions:

A Classes derived from the GM_Solid class (ISO 19107) SHALL only
include exterior boundaries. (The interior association on the
GM_SolidBoundary shall not be defined)

An implementing technology may not be able to support all of the concepts defined in the CityGML
Conceptual Model. Alternately, some concepts from the Conceptual Model may be inappropriate for
the application domain for which the Implementation Specification was developed. In those cases,
elements of the Conceptual Model may be mapped to null elements in the Implementation
Specification.

Permission 1 /per/Core/classes

For each UML class defined or referenced in CityGML Conceptual Model:

A An Implementation Specification MAY represent that class as a
null class with no attributes, associations, or definition.

B An Implementation Specification MAY represent an association of
the UML class with a null association.

C An Implementation Specification MAY represent an attribute of
the UML class with a null attribute.

41

D Whenever a null element is used to represent a concept from the
Conceptual Model, the Implementation Specification SHOULD
document that mapping and provide an explanation for why that
concept was not implemented.

Table 4 lists the surfaces that are allowed as thematic surface boundaries of the space classes
defined in the Core module:

Table 4. Core space classes and their allowed thematic surface boundaries

Space class Allowed space boundaries

AbstractLogicalSpace • Core::AbstractSpaceBoundary and the subclasses:
 Core::AbstractThematicSurface,
 Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

AbstractOccupiedSpace • Core::AbstractSpaceBoundary and the subclasses:
 Core::AbstractThematicSurface,
 Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

AbstractPhysicalSpace • Core::AbstractSpaceBoundary and the subclasses:
 Core::AbstractThematicSurface,
 Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

AbstractSpace • Core::AbstractSpaceBoundary and the subclasses:
 Core::AbstractThematicSurface,
 Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

AbstractUnoccupiedSpa
ce

• Core::AbstractSpaceBoundary and the subclasses:
 Core::AbstractThematicSurface,
 Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

Surface boundaries are constrained by the following requirement:

42

Requirement 3 /req/core/boundaries

Table 4 lists the surfaces that are allowed as thematic surface boundaries of the space
classes defined in the Core module. An Implementation Specification SHALL only
support the boundaries described in Table 4

The use of extension capabilities by Core elements is constrained by the following requirement:

Requirement 4 /req/core/ade/use

ADE element and property extensions SHALL NOT be used unless conformance with the
ADE Requirements Class can be demonstrated.

8.2.2. ISO Dependencies

CityGML builds on the ISO 19100 family of standards. The applicable standards are identified in the
diagram in Figure 13. Data dictionaries are included for all of the ISO-defined classes explicitly
referenced in the CityGML UML model. These data dictionaries are provided for the convenience of
the user. The ISO standards are the normative source.

Figure 13. Use of ISO Standards in CityGML

The ISO classes explicitly used in the CityGML UML model are introduced in Table 5. More details
about these classes can be found in the Data Dictionary in Chapter 9.

Table 5. ISO Classes used in CityGML

Class Name Description

43

AnyFeature A generalization of all feature types

CV_DiscreteGridPointC
overage

A coverage that returns the same feature attribute values for every direct
position within any object in its domain.

Direct Position The coordinates for a position within some coordinate reference system.

GM_Object root class of the geometric object taxonomy.

GM_MultiCurve An aggregate class containing only instances of GM_OrientableCurve.

GM_MultiPoint An aggregate class containing only points.

GM_MultiSurface An aggregate class containing only instances of GM_OrientableSurface.

GM_Point The basic data type for a geometric object consisting of one and only one
point.

GM_Solid The basis for 3-dimensional geometry. The extent of a solid is defined by
the boundary surfaces.

GM_Surface The basis for 2-dimensional geometry.

GM_Tin A GM_TriangulatedSurface which uses the Delaunay or similar algorithm.

GM_TriangulatedSurfac
e

A GM_PolyhedralSurface that is composed only of triangles

SC_CRS Coordinate reference system which is usually single but may be
compound.

TM_Position A union class that consists of one of the data types listed as its attributes.

8.2.3. City Models and City Objects

City models are virtual representations of real-world cities and landscapes. A city model aggregates
different types of objects, which can be city objects, appearances, different versions of the city
model, transitions between different versions of the city model, and feature objects. All objects
defined in the CityGML CM are features with lifespan. This allows the optional specification of the
real-world and database times for the existence of each feature, as is required by the Versioning
module (cf. Section 8.13). Features that define thematic concepts related to cities and landscapes,
such as building, bridge, water body, or land use, are referred to as city objects. All city objects
define properties that describe the objects in more detail. These static properties can be overridden
with time-varying data through Dynamizers (cf. Section 8.6).

44

Figure 14. UML City Models and City Objects

The City Model and City Object classes defined in the CityGML UML model are introduced in Table
6. More details about these classes can be found in the Data Dictionary in Chapter 9.

Table 6. City Model and City Object classes used in Core

Class Description

AbstractAppearance
«FeatureType»

AbstractAppearance is the abstract superclass to represent any kind of
appearance objects.

AbstractCityObject
«FeatureType»

AbstractCityObject is the abstract superclass of all thematic classes within
the CityGML Conceptual Model.

AbstractDynamizer
«FeatureType»

AbstractDynamizer is the abstract superclass to represent Dynamizer
objects.

AbstractFeature
«FeatureType»

AbstractFeature is the abstract superclass of all feature types within the
CityGML Conceptual Model.

AbstractFeatureWithLif
espan
«FeatureType»

AbstractFeatureWithLifespan is the base class for all CityGML features.
This class allows the optional specification of the real-world and database
times for the existence of each feature.

AbstractVersion
«FeatureType»

AbstractVersion is the abstract superclass to represent Version objects.

AbstractVersionTransit
ion
«FeatureType»

AbstractVersionTransition is the abstract superclass to represent
VersionTransition objects.

CityModel
«FeatureType»

CityModel is the container for all objects belonging to a city model.

45

8.2.4. Space Concept

All city objects are differentiated into spaces and space boundaries. Spaces are entities of
volumetric extent in the real world. Buildings, water bodies, trees, rooms, and traffic spaces, for
instance, have a volumetric extent. Spaces can be classified into physical spaces and logical spaces.
Physical spaces, in turn, can be further classified into occupied spaces and unoccupied spaces.

Space boundaries, in contrast, are entities with areal extent in the real world. Space boundaries can
be differentiated into different types of thematic surfaces, such as wall surfaces and roof surfaces.

A detailed introduction to the Space concept can be found in Section 7.4. In particular, the
classification into OccupiedSpace and UnoccupiedSpace might not always be apparent at first sight.
Carports, for instance, represent an OccupiedSpace, although they are not closed and most of the
space is free of matter, see Figure 15. Since a carport is a roofed, immovable structure with the
purpose of providing shelter to objects (i.e. cars), carports are frequently represented as buildings
in cadastres. Thus, also in CityGML, a carport should be modelled as an instance of the class
Building. Since Building is transitively a subclass of OccupiedSpace, a carport is an OccupiedSpace
as well. However, only in LOD1, the entire volumetric region covered by the carport would be
considered as physically occupied. In LOD1, the occupied space is defined by the entire carport
solid (unless a room would be defined in LOD1 that would model the unoccupied part below the
roof); whereas in LOD2 and LOD3, the solids represent more realistically the really physically
occupied space of the carport. In addition, for all OccupiedSpaces, the normal vectors of the
thematic surfaces like the RoofSurface need to point away from the solids, i.e. consistent with the
solid geometry.

Figure 15. Representation of a carport as OccupiedSpace in different LODs. The red boxes represent solids,
the green area represents a surface. In addition, the normal vectors of the roof solid (in red) and the roof
surface (in green) are shown.

In contrast, a room is a physically unoccupied space. In CityGML, a room is represented by the class
BuildingRoom that is a subclass of UnoccupiedSpace. In LOD1, the entire room solid would be
considered as unoccupied space, which can contain furniture and installations, though, as is shown
in Figure 16. In LOD2 and 3, the solid represents more realistically the really physically unoccupied
space of the room (possibly somewhat generalized as indicated in the figure). For all
UnoccupiedSpaces, the normal vectors of the bounding thematic surfaces like the
InteriorWallSurface need to point inside the object, i.e. opposite to the solid geometry.

46

Figure 16. Representation of a room as UnoccupiedSpace in different LODs. The red boxes represent solids,
the green area represents a surface. In addition, the normal vectors of the room solid (in red) and the wall
surface (in green) are shown.

The UML diagram of the Space concept classes is depicted in Figure 17.

Figure 17. UML Space Concepts

The Space Concept classes defined in the CityGML UML model are introduced in Table 7. More
details about these classes can be found in the Data Dictionary in Chapter 9.

Table 7. Space Classes used in Core

Class Description

AbstractLogicalSpace
«FeatureType»

AbstractLogicalSpace is the abstract superclass for all types of logical
spaces. Logical space refers to spaces that are not bounded by physical
surfaces but are defined according to thematic considerations.

47

AbstractOccupiedSpace
«FeatureType»

AbstractOccupiedSpace is the abstract superclass for all types of
physically occupied spaces. Occupied space refers to spaces that are
partially or entirely filled with matter.

AbstractPhysicalSpace
«FeatureType»

AbstractPhysicalSpace is the abstract superclass for all types of physical
spaces. Physical space refers to spaces that are fully or partially bounded
by physical objects.

AbstractSpace
«FeatureType»

AbstractSpace is the abstract superclass for all types of spaces. A space is
an entity of volumetric extent in the real world.

AbstractSpaceBoundar
y
«FeatureType»

AbstractSpaceBoundary is the abstract superclass for all types of space
boundaries. A space boundary is an entity with areal extent in the real
world. Space boundaries are objects that bound a Space. They also realize
the contact between adjacent spaces.

AbstractThematicSurfa
ce
«FeatureType»

AbstractThematicSurface is the abstract superclass for all types of
thematic surfaces.

AbstractUnoccupiedSpa
ce
«FeatureType»

AbstractUnoccupiedSpace is the abstract superclass for all types of
physically unoccupied spaces. Unoccupied space refers to spaces that are
entirely or mostly free of matter.

ClosureSurface
«FeatureType»

ClosureSurface is a special type of thematic surface used to close holes in
volumetric objects. Closure surfaces are virtual (non-physical) surfaces.

8.2.5. Geometry and LOD

Spaces and space boundaries can have various geometry representations depending on the Levels
of Detail (LOD). Spaces can be spatially represented as single points in LOD0, multi-surfaces in
LOD0/2/3, solids in LOD1/2/3, and multi-curves in LOD2/3. Space boundaries can be represented as
multi-surfaces in LOD0/2/3 and as multi-curves in LOD2/3. All Levels of Detail allow for the
representation of the interior of city objects.

The different Levels of Detail are defined in the following way:

• LOD 0: Volumetric real-world objects (Spaces) can be spatially represented by a single point, by
a set of curves, or by a set of surfaces. Areal real-world objects (Space Boundaries) can be
spatially represented in LOD0 by a set of curves or a set of surfaces. LOD0 surface
representations are typically the result of a projection of the shape of a volumetric object onto a
plane parallel to the ground, hence, representing a footprint (e.g. a building footprint or a floor
plan of the rooms inside a building). LOD0 curve representations are either the result of a
projection of the shape of a vertical surface (e.g. a wall surface) onto a grounding plane or the
skeleton of a volumetric shape of longitudinal extent such as a road or river segment.

• LOD 1: Volumetric real-world objects (Spaces) are spatially represented by a vertical extrusion
solid, i.e. a solid created from a horizontal footprint by vertical extrusion. Areal real-world
objects (Space Boundaries) can be spatially represented in LOD1 by a set of horizontal or
vertical surfaces.

• LOD 2: Volumetric real-world objects (Spaces) can be spatially represented by a set of curves, a
set of surfaces, or a single solid geometry. Areal real-world objects (Space Boundaries) can be

48

spatially represented in LOD2 by a set of surfaces. The shape of the real-world object is
generalized in LOD2 and smaller details (e.g. bulges, dents, sills, but also structures like e.g.
balconies or dormers of buildings) are typically neglected. LOD2 curve representations are
skeletons of volumetric shapes of longitudinal extent like an antenna or a chimney.

• LOD 3: Volumetric real-world objects (Spaces) can be spatially represented by a set of curves, a
set of surfaces, or a single solid geometry. Areal real-world objects (Space Boundaries) can be
spatially represented in LOD3 by a set of surfaces. LOD3 is the highest level of detail and
respective geometries include all available shape details.

In addition, the geometry can also be represented implicitly. The shape is stored only once as a
prototypical geometry, which then is re-used or referenced, wherever the corresponding feature
occurs in the 3D city model.

The thematic classes, such as building, tunnel, road, land use, water body, or city furniture are
defined as subclasses of the space and space boundary classes within the thematic modules. Since
all city objects in the thematic modules represent subclasses of the space and space boundary
classes, they automatically inherit the geometries defined in the Core module.

The UML diagram of the Geometry and LoD concept classes is depicted in Figure 18.

Figure 18. UML Geometry and LOD Concepts

The Geometry and LOD Concept classes defined in the CityGML UML model are introduced in Table
8. More details about these classes can be found in the Data Dictionary in Chapter 9.

Of particular note is the Implicit Geometry concept. Many of the objects encountered in a city
landscape have the same geometry. How many types of street lamps can there be? An Implicit

49

Geometry captures that geometry once, and re-uses that one geometry for all similar street lamp
objects.

Table 8. Geometry Classes used in Core

Class Description

AbstractOccupiedSpace
«FeatureType»

AbstractOccupiedSpace is the abstract superclass for all types of
physically occupied spaces. Occupied space refers to spaces that are
partially or entirely filled with matter.

AbstractPhysicalSpace
«FeatureType»

AbstractPhysicalSpace is the abstract superclass for all types of physical
spaces. Physical space refers to spaces that are fully or partially bounded
by physical objects.

AbstractPointCloud
«FeatureType»

AbstractPointCloud is the abstract superclass to represent PointCloud
objects.

AbstractSpace
«FeatureType»

AbstractSpace is the abstract superclass for all types of spaces. A space is
an entity of volumetric extent in the real world.

AbstractThematicSurfa
ce
«FeatureType»

AbstractThematicSurface is the abstract superclass for all types of
thematic surfaces.

ImplicitGeometry
«ObjectType»

ImplicitGeometry is a geometry representation where the shape is stored
only once as a prototypical geometry. Examples are a tree or other
vegetation object, a traffic light or a traffic sign. This prototypic geometry
object can be re-used or referenced many times, wherever the
corresponding feature occurs in the 3D city model.

8.2.6. CityGML Core Model

The City Model and City Object classes, the Space Concept classes, and the Geometry and LOD
classes define the majority of the CityGML Core module. In addition to these concepts, the Core
module also specifies that city objects can have relations to other city objects and that they can
have address information. All other modules defined in the CityGML model refer to the Core
module.

The UML diagram of the complete Core module is depicted in Figure 19.

50

Figure 19. UML diagram of CityGML’s core module.

Table 6, Table 7, and Table 8 introduce already most of the classes of the CityGML Core module. The
additional classes required to complete this section of the standard are introduced in Table 9. More
details about these classes can be found in the Data Dictionary in Chapter 9.

Table 9. Additional Classes used in Core

Class Description

Address
«FeatureType»

Address represents an address of a city object.

CityObjectRelation
«ObjectType»

CityObjectRelation represents a specific relation from the city object in
which the relation is included to another city object.

8.2.7. Data types, Enumerations, and Code lists

The ADE data types provided for in the Core module are illustrated in Figure 20.

51

Figure 20. ADE classes of the CityGML Core module.

The Data Types, Basic Types, Enumerations, Unions, and Code Lists provided for the Core module
are illustrated in Figure 21.

Figure 21. Basic Types, Enumerations, and Codelists from the CityGML Core module.

52

These supporting constructs are defined in the following tables.

Table 10. Data Types used in Core

Name Description

AbstractGenericAttribu
te
«DataType»

AbstractGenericAttribute is the abstract superclass for all types of generic
attributes.

ADEOfAbstractAppeara
nce
«DataType»

ADEOfAbstractAppearance acts as a hook to define properties within an
ADE that are to be added to AbstractAppearance.

ADEOfAbstractCityObje
ct
«DataType»

ADEOfAbstractCityObject acts as a hook to define properties within an
ADE that are to be added to AbstractCityObject.

ADEOfAbstractDynami
zer
«DataType»

ADEOfAbstractDynamizer acts as a hook to define properties within an
ADE that are to be added to AbstractDynamizer.

ADEOfAbstractFeature
«DataType»

ADEOfAbstractFeature acts as a hook to define properties within an ADE
that are to be added to AbstractFeature.

ADEOfAbstractFeature
WithLifespan
«DataType»

ADEOfAbstractFeatureWithLifespan acts as a hook to define properties
within an ADE that are to be added to AbstractFeatureWithLifespan.

ADEOfAbstractLogicalS
pace
«DataType»

ADEOfAbstractLogicalSpace acts as a hook to define properties within an
ADE that are to be added to AbstractLogicalSpace.

ADEOfAbstractOccupie
dSpace
«DataType»

ADEOfAbstractOccupiedSpace acts as a hook to define properties within
an ADE that are to be added to AbstractOccupiedSpace.

ADEOfAbstractPhysical
Space
«DataType»

ADEOfAbstractPhysicalSpace acts as a hook to define properties within
an ADE that are to be added to AbstractPhysicalSpace.

ADEOfAbstractPointClo
ud
«DataType»

ADEOfAbstractPointCloud acts as a hook to define properties within an
ADE that are to be added to AbstractPointCloud.

ADEOfAbstractSpace
«DataType»

ADEOfAbstractSpace acts as a hook to define properties within an ADE
that are to be added to AbstractSpace.

ADEOfAbstractSpaceBo
undary
«DataType»

ADEOfAbstractSpaceBoundary acts as a hook to define properties within
an ADE that are to be added to AbstractSpaceBoundary.

ADEOfAbstractThemati
cSurface
«DataType»

ADEOfAbstractThematicSurface acts as a hook to define properties within
an ADE that are to be added to AbstractThematicSurface.

53

ADEOfAbstractUnoccup
iedSpace
«DataType»

ADEOfAbstractUnoccupiedSpace acts as a hook to define properties
within an ADE that are to be added to AbstractUnoccupiedSpace.

ADEOfAbstractVersion
«DataType»

ADEOfAbstractVersion acts as a hook to define properties within an ADE
that are to be added to AbstractVersion.

ADEOfAbstractVersion
Transition
«DataType»

ADEOfAbstractVersionTransition acts as a hook to define properties
within an ADE that are to be added to AbstractVersionTransition.

ADEOfAddress
«DataType»

ADEOfAddress acts as a hook to define properties within an ADE that are
to be added to an Address.

ADEOfCityModel
«DataType»

ADEOfCityModel acts as a hook to define properties within an ADE that
are to be added to a CityModel.

ADEOfClosureSurface
«DataType»

ADEOfClosureSurface acts as a hook to define properties within an ADE
that are to be added to a ClosureSurface.

ExternalReference
«DataType»

ExternalReference is a reference to a corresponding object in another
information system, for example in the German cadastre (ALKIS), the
German topographic information system (ATKIS), or the OS UK
MasterMap®.

Occupancy
«DataType»

Occupancy is an application-dependent indication of what is contained
by a feature.

QualifiedArea
«DataType»

QualifiedArea is an application-dependent measure of the area of a space
or of a thematic surface.

QualifiedVolume
«DataType»

QualifiedVolume is an application-dependent measure of the volume of a
space.

XALAddress
«DataType»

XALAddress represents address details according to the OASIS xAL
standard.

Table 11. Primitive Data Types used in Core

Name Description

Code
«BasicType»

Code is a basic type for a String-based term, keyword, or name that can
additionally have a code space.

DoubleBetween0and1
«BasicType»

DoubleBetween0and1 is a basic type for values, which are greater or
equal than 0 and less or equal than 1. The type is used for color encoding,
for example.

DoubleBetween0and1Li
st
«BasicType»

DoubleBetween0and1List is a basic type that represents a list of double
values greater or equal than 0 and less or equal than 1. The type is used
for color encoding, for example.

DoubleList
«BasicType»

DoubleList is an ordered sequence of double values.

DoubleOrNilReasonList
«BasicType»

DoubleOrNilReasonList is a basic type that represents a list of double
values and/or nil reasons.

54

ID
«BasicType»

ID is a basic type that represents a unique identifier.

IntegerBetween0and3
«BasicType»

IntegerBetween0and3 is a basic type for integer values, which are greater
or equal than 0 and less or equal than 3. The type is used for encoding the
LOD number.

MeasureOrNilReasonLi
st
«BasicType»

MeasureOrNilReasonList is a basic type that represents a list of double
values and/or nil reasons together with a unit of measurement.

TransformationMatrix2
x2
«BasicType»

TransformationMatrix2x2 is a 2 by 2 matrix represented as a list of four
double values in row major order.

TransformationMatrix3
x4
«BasicType»

TransformationMatrix3x4 is a 3 by 4 matrix represented as a list of
twelve double values in row major order.

TransformationMatrix4
x4
«BasicType»

TransformationMatrix4x4 is a 4 by 4 matrix represented as a list of
sixteen double values in row major order.

Table 12. Union types used in Core

Name Description

CityModelMember
«Union»

CityModelMember is a union type that enumerates the different types of
objects that can occur as members of a city model.

DoubleOrNilReason
«Union»

DoubleOrNilReason is a union type that allows for choosing between a
double value and a nil reason.

NilReason
«Union»

NilReason is a union type that allows for choosing between two different
types of nil reason.

Table 13. Enumerated Classes used in Core

Name Description

RelativeToTerrain
«Enumeration»

RelativeToTerrain enumerates the spatial relations of a city object
relative to terrain in a qualitative way.

RelativeToWater
«Enumeration»

RelativeToWater enumerates the spatial relations of a city object relative
to the water surface in a qualitative way.

SpaceType
«Enumeration»

SpaceType is an enumeration that characterises a space according to its
closure properties.

Table 14. CodeList Classes used in Core

Name Description

IntervalValue
«CodeList»

IntervalValue is a code list used to specify a time period.

55

MimeTypeValue
«CodeList»

MimeTypeValue is a code list used to specify the MIME type of a
referenced resource.

NilReasonEnumeration
«CodeList»

NilReasonEnumeration is a code list that enumerates the different nil
reasons.

OccupantTypeValue
«CodeList»

OccupantTypeValue is a code list used to classify occupants.

OtherRelationTypeValu
e
«CodeList»

OtherRelationTypeValue is a code list used to classify other types of city
object relations.

QualifiedAreaTypeValu
e
«CodeList»

QualifiedAreaTypeValue is a code list used to specify area types.

QualifiedVolumeTypeV
alue
«CodeList»

QualifiedVolumeTypeValue is a code list used to specify volume types.

RelationTypeValue
«CodeList»

RelationTypeValue is a code list used to classify city object relations.

TemporalRelationType
Value
«CodeList»

TemporalRelationTypeValue is a code list used to classify temporal city
object relations.

TopologicalRelationTyp
eValue
«CodeList»

TopologicalRelationTypeValue is a code list used to classify topological
city object relations.

8.2.8. Additional Information

A detailed discussion of the CityGML Core can be found in the OGC CityGML 3.0 Users Guide.

8.3. Appearance

Requirements Class

http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-appearance

Target type Implementation Specification

Dependency /req/req-class-core

The Appearance module provides the representation of surface data such as observable properties
for surface geometry objects in the form of textures and material.

Appearances are not limited to visual data but represent arbitrary categories called themes such as
infrared radiation, noise pollution, or earthquake-induced structural stress. A single surface
geometry object may have surface data for multiple themes. Similarly, surface data can be shared
by multiple surface geometry objects (e.g. road paving).

56

http://docs.opengeospatial.org/DRAFTS/20-066.html
http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-appearance

Surface data that is constant across a surface is modelled as material based on the material
definitions from the X3D and COLLADA standards. Surface data that depends on the exact location
within the surface is modelled as a texture. This can either be a parameterized texture (a texture
that uses texture coordinates) or a transformation matrix for parameterization, or a georeferenced
texture (a texture that uses a planimetric projection).

Each surface geometry object can have both, a material and a texture per theme and side. This
allows for providing a constant approximation and a complex measurement of a surface’s property
simultaneously.

The UML diagram of the Appearance module is illustrated in Figure 22. A detailed discussion of this
Requirements Class can be found in the CityGML 3.0 Users Guide.

57

http://docs.opengeospatial.org/DRAFTS/20-066.html

Figure 22. UML diagram of CityGML’s Appearance model.

The ADE data types provided for the Appearance module are illustrated in Figure 23.

58

Figure 23. ADE classes of the CityGML Appearance Module.

8.3.1. Requirements

The following requirement defines the rules governing implementation of the CityGML Appearance
Module as an Implementation Specification.

Requirement 5 /req/appearance/classes

For each UML class defined or referenced in the Appearance Package:

A The Implementation Specification SHALL contain an element
which represents the same concept as that defined for the UML
class.

B The Implementation Specification SHALL represent associations
with the same source, target, direction, roles, and multiplicities as
those of the UML class.

C The implementation Specification SHALL represent the attributes
of the UML class including the name, definition, type, and
multiplicity.

D The implementation Specification SHALL represent the attributes
of all superclasses of the UML class including the name,
definition, type, and multiplicity.

E The implementation Specification SHALL represent the
associations of all superclasses of the UML class including the
source, target, direction, roles, and multiplicity.

F The Implementation Specification SHALL specify how an
implementation observes all constraints the Conceptual Model
imposes on the UML class.

The use of extension capabilities by Appearance elements is constrained by the following
requirement:

Requirement 6 /req/appearance/ade/use

59

ADE element and property extensions SHALL NOT be used unless conformance with the
ADE Requirements Class can be demonstrated.

8.3.2. Class Definitions

Table 15. Classes used in Appearance

Class Description

AbstractSurfaceData
«FeatureType»

AbstractSurfaceData is the abstract superclass for different kinds of
textures and material.

AbstractTexture
«FeatureType»

AbstractTexture is the abstract superclass to represent the common
attributes of the classes ParameterizedTexture and
GeoreferencedTexture.

Appearance
«FeatureType»

An Appearance is a collection of surface data, i.e. observable properties
for surface geometry objects in the form of textures and material.

GeoreferencedTexture
«FeatureType»

A GeoreferencedTexture is a texture that uses a planimetric projection. It
contains an implicit parameterization that is either stored within the
image file, an accompanying world file or specified using the orientation
and referencePoint elements.

ParameterizedTexture
«FeatureType»

A ParameterizedTexture is a texture that uses texture coordinates or a
transformation matrix for parameterization.

X3DMaterial
«FeatureType»

X3DMaterial defines properties for surface geometry objects based on the
material definitions from the X3D and COLLADA standards.

TextureAssociation
«ObjectType»

TextureAssociation denotes the relation of a texture to a surface
geometry object.

Table 16. Data Types used in Appearance

Name Description

AbstractTextureParame
terization
«DataType»

AbstractTextureParameterization is the abstract superclass for different
kinds of texture parameterizations.

ADEOfAbstractSurface
Data
«DataType»

ADEOfAbstractSurfaceData acts as a hook to define properties within an
ADE that are to be added to AbstractSurfaceData.

ADEOfAbstractTexture
«DataType»

ADEOfAbstractTexture acts as a hook to define properties within an ADE
that are to be added to AbstractTexture.

ADEOfAppearance
«DataType»

ADEOfAppearance acts as a hook to define properties within an ADE that
are to be added to an Appearance.

ADEOfGeoreferencedTe
xture
«DataType»

ADEOfGeoreferencedTexture acts as a hook to define properties within
an ADE that are to be added to a GeoreferencedTexture.

60

ADEOfParameterizedTe
xture
«DataType»

ADEOfParameterizedTexture acts as a hook to define properties within
an ADE that are to be added to a ParameterizedTexture.

ADEOfX3DMaterial
«DataType»

ADEOfX3DMaterial acts as a hook to define properties within an ADE that
are to be added to an X3DMaterial.

TexCoordGen
«DataType»

TexCoordGen defines texture parameterization using a transformation
matrix.

TexCoordList
«DataType»

TexCoordList defines texture parameterization using texture coordinates.

Table 17. Primitive Data Types used in Appearance

Name Description

Color
«BasicType»

Color is a list of three double values between 0 and 1 defining an RGB
color value.

ColorPlusOpacity
«BasicType»

Color is a list of four double values between 0 and 1 defining an RGBA
color value. Opacity value of 0 means transparent.

Table 18. Enumerated Classes used in Appearance

Name Description

TextureType
«Enumeration»

TextureType enumerates the different texture types.

WrapMode
«Enumeration»

WrapMode enumerates the different fill modes for textures.

8.3.3. Additional Information

Additional information about the Appearance Module can be found in the OGC CityGML 3.0 Users
Guide

8.4. City Furniture

Requirements Class

http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-cityfurniture

Target type Implementation Specification

Dependency /req/req-class-core

The CityFurniture module provides the representation of objects or pieces of equipment that are
installed in the outdoor environment for various purposes, such as decoration, explanation or
control. City furniture objects are relatively small, immovable objects and usually are of
stereotypical form. Examples include road signs, traffic signals, bicycle racks, street lamps,
fountains, flower buckets, advertising columns, and benches.

City furniture is represented in the UML model by the top-level feature type CityFurniture, which is

61

http://docs.opengeospatial.org/DRAFTS/20-066.html
http://docs.opengeospatial.org/DRAFTS/20-066.html
http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-cityfurniture

also the only class of the CityFurniture module.

The UML diagram of the CityFurniture module is depicted in Figure 24. A detailed discussion of this
Requirements Class can be found in the CityGML 3.0 Users Guide.

Figure 24. UML diagram of CityGML’s City Furniture model.

The ADE data types and Code Lists provided for the CityFurniture module are illustrated in Figure
25.

Figure 25. ADE classes and Code Lists of the CityGML CityFurniture module.

Table 19 lists the surfaces that are allowed as thematic surface boundaries of the space classes
defined in the CityFurniture module:

Table 19. CityFurniture space classes and their allowed thematic surface boundaries

Space class Allowed space boundaries

62

http://docs.opengeospatial.org/DRAFTS/20-066.html

CityFurniture • Core::ClosureSurface

• Generics::GenericThematicSurface

• Possible classes from ADEs

8.4.1. Requirements

The following requirement defines the rules governing implementation of the CityGML City
Furniture Module as an Implementation Specification.

Requirement 7 /req/cityfurniture/classes

For each UML class defined or referenced in the CityFurniture Package:

A The Implementation Specification SHALL contain an element
which represents the same concept as that defined for the UML
class.

B The Implementation Specification SHALL represent associations
with the same source, target, direction, roles, and multiplicities as
those of the UML class.

C The implementation Specification SHALL represent the attributes
of the UML class including the name, definition, type, and
multiplicity.

D The implementation Specification SHALL represent the attributes
of all superclasses of the UML class including the name,
definition, type, and multiplicity.

E The implementation Specification SHALL represent the
associations of all superclasses of the UML class including the
source, target, direction, roles, and multiplicity.

F The Implementation Specification SHALL specify how an
implementation observes all constraints the Conceptual Model
imposes on the UML class.

The implementation of this Module is further constrained by the following spatial boundary
requirement:

Requirement 8 /req/cityfurniture/boundaries

Table 19 lists the surfaces that are allowed as thematic surface boundaries of the space
classes defined in the CityFurniture module. An Implementation Specification SHALL
only support the boundaries described in Table 19

The use of extension capabilities by City Furniture elements is constrained by the following
requirement:

Requirement 9 /req/cityfurniture/ade/use

63

ADE element and property extensions SHALL NOT be used unless conformance with the
ADE Requirements Class can be demonstrated.

8.4.2. Class Definitions

Table 20. Classes used in CityFurniture

Class Description

CityFurniture
«TopLevelFeatureType»

CityFurniture is an object or piece of equipment installed in the outdoor
environment for various purposes. Examples include street signs, traffic
signals, street lamps, benches, fountains.

Table 21. Data Types used in CityFurniture

Name Description

ADEOfCityFurniture
«DataType»

ADEOfCityFurniture acts as a hook to define properties within an ADE
that are to be added to a CityFurniture.

Table 22. CodeList Classes used in CityFurniture

Name Description

CityFurnitureClassValu
e
«CodeList»

CityFurnitureClassValue is a code list used to further classify a
CityFurniture.

CityFurnitureFunction
Value
«CodeList»

CityFurnitureFunctionValue is a code list that enumerates the different
purposes of a CityFurniture.

CityFurnitureUsageVal
ue
«CodeList»

CityFurnitureUsageValue is a code list that enumerates the different uses
of a CityFurniture.

8.4.3. Additional Information

Additional information about the City Furniture Module can be found in the OGC CityGML 3.0 Users
Guide

8.5. City Object Group

Requirements Class

http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-cityobjectgroup

Target type Implementation Specification

Dependency /req/req-class-core

The CityObjectGroup module provides the application-specific aggregation of city objects according
to some user-defined criteria. Examples for groups are the buildings in a specific region, the result
of a query, or objects put together for visualization purposes. Each member of a group may be

64

http://docs.opengeospatial.org/DRAFTS/20-066.html
http://docs.opengeospatial.org/DRAFTS/20-066.html
http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-cityobjectgroup

qualified by a role name, reflecting the role each city object plays in the context of the group. City
object groups are represented in the UML model by the top-level feature type CityObjectGroup,
which is the main class of the CityObjectGroup module.

City object groups can be linked to other city objects, the so-called parent objects, which allows for
modelling a generic hierarchical grouping concept. In addition, as city object groups represent city
objects themselves, a group may become a member of another group realizing recursive
aggregation in this way.

The UML diagram of the CityObjectGroup module is depicted in Figure 26. A detailed discussion of
this Requirements Class can be found in the CityGML 3.0 Users Guide.

Figure 26. UML diagram of the City Object Group Model.

The ADE data types provided for the CityObjectGroup module are illustrated in Figure 27.

Figure 27. ADE classes of the CityGML CityObjectGroup module.

The Code Lists provided for the CityObjectGroup module are illustrated in Figure 28.

65

http://docs.opengeospatial.org/DRAFTS/20-066.html

Figure 28. Codelists from the CityGML CityObjectGroup module.

Table 23 lists the surfaces that are allowed as thematic surface boundaries of the space classes
defined in the CityObjectGroup module:

Table 23. CityObjectGroup space classes and their allowed thematic surface boundaries

Space class Allowed space boundaries

CityObjectGroup • Core::ClosureSurface

• Generics::GenericThematicSurface

• Possible classes from ADEs

8.5.1. Requirements

The following requirement defines the rules governing implementation of the CityGML City Object
Group Module as an Implementation Specification.

Requirement 10 /req/cityobjectgroup/classes

For each UML class defined or referenced in the CityObjectGroup Package:

A The Implementation Specification SHALL contain an element
which represents the same concept as that defined for the UML
class.

B The Implementation Specification SHALL represent associations
with the same source, target, direction, roles, and multiplicities as
those of the UML class.

C The implementation Specification SHALL represent the attributes
of the UML class including the name, definition, type, and
multiplicity.

D The implementation Specification SHALL represent the attributes
of all superclasses of the UML class including the name,
definition, type, and multiplicity.

66

E The implementation Specification SHALL represent the
associations of all superclasses of the UML class including the
source, target, direction, roles, and multiplicity.

F The Implementation Specification SHALL specify how an
implementation observes all constraints the Conceptual Model
imposes on the UML class.

The implementation of this Module is further constrained by the following spatial boundary
requirement:

Requirement 11 /req/cityobjectgroup/boundaries

Table 23 lists the surfaces that are allowed as thematic surface boundaries of the space
classes defined in the CityObjectGroup module. An Implementation Specification SHALL
only support the boundaries described in Table 23

The use of extension capabilities by City Object Group elements is constrained by the following
requirement:

Requirement 12 /req/cityobjectgroup/ade/use

ADE element and property extensions SHALL NOT be used unless conformance with the
ADE Requirements Class can be demonstrated.

8.5.2. Class Definitions

Table 24. Classes used in CityObjectGroup

Class Description

CityObjectGroup
«TopLevelFeatureType»

A CityObjectGroup represents an application-specific aggregation of city
objects according to some user-defined criteria. Examples for groups are
the buildings in a specific region, the result of a query, or objects put
together for visualization purposes. Each member of a group may be
qualified by a role name, reflecting the role each city object plays in the
context of the group.

Role
«ObjectType»

Role qualifies the function of a city object within the CityObjectGroup.

Table 25. Data Types used in CityObjectGroup

Name Description

ADEOfCityObjectGroup
«DataType»

ADEOfCityObjectGroup acts as a hook to define properties within an ADE
that are to be added to a CityObjectGroup.

Table 26. CodeList Classes used in CityObjectGroup

Name Description

67

CityObjectGroupClassV
alue
«CodeList»

CityObjectGroupClassValue is a code list used to further classify a
CityObjectGroup.

CityObjectGroupFuncti
onValue
«CodeList»

CityObjectGroupFunctionValue is a code list that enumerates the different
purposes of a CityObjectGroup.

CityObjectGroupUsageV
alue
«CodeList»

CityObjectGroupUsageValue is a code list that enumerates the different
uses of a CityObjectGroup.

8.5.3. Additional Information

Additional information about the City Object Group Module can be found in the OGC CityGML 3.0
Users Guide.

8.6. Dynamizer

Requirements Class

http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-dynamizer

Target type Implementation Specification

Dependency /req/req-class-core

The Dynamizer module provides the concepts that enable representation of time-varying data for
city object properties as well as for integrating sensors with 3D city models. Dynamizers are objects
that inject timeseries data for an individual attribute of the city object in which the Dynamizer is
included. In order to represent dynamic (time-dependent) variations of its value, the timeseries
data overrides the static value of the referenced city object attribute.

The dynamic values may be given by retrieving observation results directly from external
sensor/IoT services using a sensor connection (e.g. OGC SensorThings API, Sensor Observation
Service, or other sensor data platforms including MQTT). Alternatively, the dynamic values may be
provided as atomic timeseries that represent time-varying data of a specific data type for a single
contiguous time interval. The data can be provided in:

• external tabulated files, such as CSV or Excel sheets,

• external files that format timeseries data according to the OGC TimeseriesML Standard or the
OGC Observations & Measurements standards,

• or inline as embedded time-value-pairs.

Furthermore, timeseries data can also be aggregated to form composite timeseries with non-
overlapping time intervals.

By using the Dynamizer module, fast changes over a short or longer time period with respect to
cities and city models can be represented. This includes:

68

http://docs.opengeospatial.org/DRAFTS/20-066.html
http://docs.opengeospatial.org/DRAFTS/20-066.html
http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-dynamizer

• variations of spatial properties such as change of a feature’s geometry, both in respect to shape
and to location (e.g. moving objects),

• variations of thematic attributes such as changes of physical quantities like energy demands,
temperatures, solar irradiation, traffic density, pollution concentration, or overpressure on
building walls,

• and variations with respect to sensor or real-time data resulting from simulations or
measurements.

The UML diagram of the Dynamizer module is depicted in Figure 29. A detailed discussion of this
Requirements Class can be found in the CityGML 3.0 Users Guide.

Figure 29. UML diagram of the Dynamizer Model.

The ADE data types provided for the Dynamizer module are illustrated in Figure 30.

69

http://docs.opengeospatial.org/DRAFTS/20-066.html

Figure 30. ADE classes of the CityGML Dynamizer module.

The Code Lists provided for the Dynamizer module are illustrated in Figure 31.

Figure 31. Codelists from the CityGML Dynamizer module.

8.6.1. Requirements

The following requirement defines the rules governing implementation of the CityGML Dynamizer
Module as an Implementation Specification.

Requirement 13 /req/dynamizer/classes

For each UML class defined or referenced in the Dynamizer Package:

A The Implementation Specification SHALL contain an element
which represents the same concept as that defined for the UML
class.

B The Implementation Specification SHALL represent associations
with the same source, target, direction, roles, and multiplicities as
those of the UML class.

C The implementation Specification SHALL represent the attributes
of the UML class including the name, definition, type, and
multiplicity.

70

D The implementation Specification SHALL represent the attributes
of all superclasses of the UML class including the name,
definition, type, and multiplicity.

E The implementation Specification SHALL represent the
associations of all superclasses of the UML class including the
source, target, direction, roles, and multiplicity.

F The Implementation Specification SHALL specify how an
implementation observes all constraints the Conceptual Model
imposes on the UML class.

The use of extension capabilities by Dynamizer elements is constrained by the following
requirement:

Requirement 14 /req/dynamizer/ade/use

ADE element and property extensions SHALL NOT be used unless conformance with the
ADE Requirements Class can be demonstrated.

8.6.2. Class Definitions

Table 27. Classes used in Dynamizer

Class Description

AbstractAtomicTimeser
ies
«FeatureType»

AbstractAtomicTimeseries represents the attributes and relationships
that are common to all kinds of atomic timeseries (GenericTimeseries,
TabulatedFileTimeseries, StandardFileTimeseries). An atomic timeseries
represents time-varying data of a specific data type for a single
contiguous time interval.

AbstractTimeseries
«FeatureType»

AbstractTimeseries is the abstract superclass representing any type of
timeseries data.

CompositeTimeseries
«FeatureType»

A CompositeTimeseries is a (possibly recursive) aggregation of atomic
and composite timeseries. The components of a composite timeseries
must have non-overlapping time intervals.

Dynamizer
«FeatureType»

A Dynamizer is an object that injects timeseries data for an individual
attribute of the city object in which it is included. The timeseries data
overrides the static value of the referenced city object attribute in order
to represent dynamic (time-dependent) variations of its value.

GenericTimeseries
«FeatureType»

A GenericTimeseries represents time-varying data in the form of
embedded time-value-pairs of a specific data type for a single contiguous
time interval.

71

StandardFileTimeseries
«FeatureType»

A StandardFileTimeseries represents time-varying data for a single
contiguous time interval. The data is provided in an external file
referenced in the StandardFileTimeseries. The data within the external
file is encoded according to a dedicated format for the representation of
timeseries data such as using the OGC TimeseriesML or OGC Observations
& Measurements Standard. The data type of the data has to be specified
within the external file.

TabulatedFileTimeserie
s
«FeatureType»

A TabulatedFileTimeseries represents time-varying data of a specific data
type for a single contiguous time interval. The data is provided in an
external file referenced in the TabulatedFileTimeseries. The file contains
table structured data using an appropriate file format such as comma-
separated values (CSV), Microsoft Excel (XLSX) or Google Spreadsheet.
The timestamps and the values are given in specific columns of the table.
Each row represents a single time-value-pair. A subset of rows can be
selected using the idColumn and idValue attributes.

Table 28. Data Types used in Dynamizer

Name Description

ADEOfAbstractAtomicT
imeseries
«DataType»

ADEOfAbstractAtomicTimeseries acts as a hook to define properties
within an ADE that are to be added to AbstractAtomicTimeseries.

ADEOfAbstractTimeseri
es
«DataType»

ADEOfAbstractTimeseries acts as a hook to define properties within an
ADE that are to be added to AbstractTimeseries.

ADEOfCompositeTimes
eries
«DataType»

ADEOfCompositeTimeseries acts as a hook to define properties within an
ADE that are to be added to a CompositeTimeseries.

ADEOfDynamizer
«DataType»

ADEOfDynamizer acts as a hook to define properties within an ADE that
are to be added to a Dynamizer.

ADEOfGenericTimeseri
es
«DataType»

ADEOfGenericTimeseries acts as a hook to define properties within an
ADE that are to be added to a GenericTimeseries.

ADEOfStandardFileTim
eseries
«DataType»

ADEOfStandardFileTimeseries acts as a hook to define properties within
an ADE that are to be added to a StandardFileTimeseries.

ADEOfTabulatedFileTi
meseries
«DataType»

ADEOfTabulatedFileTimeseries acts as a hook to define properties within
an ADE that are to be added to a TabulatedFileTimeseries.

72

SensorConnection
«DataType»

A SensorConnection provides all details that are required to retrieve a
specific datastream from an external sensor web service. This data type
comprises the service type (e.g. OGC SensorThings API, OGC Sensor
Observation Services, MQTT, proprietary platforms), the URL of the
sensor service, the identifier for the sensor or thing, and its observed
property as well as information about the required authentication
method.

TimeseriesComponent
«DataType»

TimeseriesComponent represents an element of a CompositeTimeseries.

TimeValuePair
«DataType»

A TimeValuePair represents a value that is valid for a given timepoint.
For each TimeValuePair, only one of the value properties can be used
mutually exclusive. Which value property has to be provided depends on
the selected value type in the GenericTimeSeries feature, in which the
TimeValuePair is included.

Table 29. Enumerated Classes used in Dynamizer

Name Description

TimeseriesTypeValue
«Enumeration»

TimeseriesTypeValue enumerates the possible value types for
GenericTimeseries and TimeValuePair.

Table 30. CodeList Classes used in Dynamizer

Name Description

AuthenticationTypeVal
ue
«CodeList»

AuthenticationTypeValue is a code list used to specify the authentication
method to be used to access the referenced sensor service. Each value
provides enough information such that a software application could
determine the required access credentials.

SensorConnectionType
Value
«CodeList»

SensorConnectionTypeValue is a code list used to specify the type of the
referenced sensor service. Each value provides enough information such
that a software application would be able to identify the API type and
version.

StandardFileTypeValue
«CodeList»

StandardFileTypeValue is a code list used to specify the type of the
referenced external timeseries data file. Each value provides information
about the standard and version.

TabulatedFileTypeValu
e
«CodeList»

TabulatedFileTypeValue is a code list used to specify the data format of
the referenced external tabulated data file.

8.6.3. Additional Information

Additional information about the Dynamizer Module can be found in the OGC CityGML 3.0 Users
Guide

73

http://docs.opengeospatial.org/DRAFTS/20-066.html
http://docs.opengeospatial.org/DRAFTS/20-066.html

8.7. Generics

Requirements Class

http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-generics

Target type Implementation Specification

Dependency /req/req-class-core

The Generics module provides the representation of generic city objects. These are city objects that
are not covered by any explicitly modelled thematic class within the CityGML Conceptual Model.
The Generics module also provides the representation of generic attributes which are attributes
that are not explicitly represented in the CityGML Conceptual Model. In order to avoid problems
concerning semantic interoperability, generic city objects and generic attributes shall only be used
if appropriate thematic classes and attributes are not provided by any other CityGML module.

In accordance with the CityGML Space concept defined in the Core module (cf. Section Core)
generic city objects can be represented as generic logical spaces, generic occupied spaces, generic
unoccupied spaces, and generic thematic surfaces. In this way, spaces and surfaces can be defined
that are not represented by any explicitly modelled class within CityGML that is a subclass of the
classes AbstractLogicalSpace, AbstractOccupiedSpace, AbstractUnoccupiedSpace or
AbstractThematicSurface, respectively. Generic city objects are represented in the UML model by
the top-level feature types GenericLogicalSpace, GenericOccupiedSpace, GenericUnoccupiedSpace
and GenericThematicSurface.

Generic attributes are defined as name-value pairs and are always associated with a city object.
Generic attributes can be of type String, Integer, Double, Date, URI, Measure, and Code. In addition,
generic attributes can be grouped under a common name as generic attribute sets.

The UML diagram of the Generics module is depicted in Figure 32. A detailed discussion of this
Requirements Class can be found in the CityGML 3.0 Users Guide.

74

http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-generics
http://docs.opengeospatial.org/DRAFTS/20-066.html

Figure 32. UML diagram of the Generics Model.

The ADE data types provided for the Generics module are illustrated in Figure 33.

75

Figure 33. ADE classes of the CityGML Generics module.

The Code Lists provided for the Generics module are illustrated in Figure 34.

Figure 34. Codelists from the CityGML Generics module.

Table 31 lists the surfaces that are allowed as thematic surface boundaries of the space classes
defined in the Generics module:

Table 31. Generics space classes and their allowed thematic surface boundaries

Space class Allowed space boundaries

GenericLogicalSpace • Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

GenericOccupiedSpace • Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

76

GenericUnoccupiedSpa
ce

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

8.7.1. Requirements

The following requirement defines the rules governing implementation of the CityGML Generics
Module as an Implementation Specification.

Requirement 15 /req/generics/classes

For each UML class defined or referenced in the Generics Package:

A The Implementation Specification SHALL contain an element
which represents the same concept as that defined for the UML
class.

B The Implementation Specification SHALL represent associations
with the same source, target, direction, roles, and multiplicities as
those of the UML class.

C The implementation Specification SHALL represent the attributes
of the UML class including the name, definition, type, and
multiplicity.

D The implementation Specification SHALL represent the attributes
of all superclasses of the UML class including the name,
definition, type, and multiplicity.

E The implementation Specification SHALL represent the
associations of all superclasses of the UML class including the
source, target, direction, roles, and multiplicity.

F The Implementation Specification SHALL specify how an
implementation observes all constraints the Conceptual Model
imposes on the UML class.

The implementation of this Module is further constrained by the following spatial boundary
requirement:

Requirement 16 /req/generics/boundaries

Table 31 lists the surfaces that are allowed as thematic surface boundaries of the space
classes defined in the Generics module. An Implementation Specification SHALL only
support the boundaries described in Table 31

The decision of whether or not to use Generics is constrained by the following requirement:

Requirement 17 /req/generics/use

77

Generic objects and attributes SHALL only be used if a more specific feature class or
attribute is not available from the CityGML conceptual model.

The use of extension capabilities by Generics elements is constrained by the following requirement:

Requirement 18 /req/generics/ade/use

ADE element and property extensions SHALL NOT be used unless conformance with the
ADE Requirements Class can be demonstrated.

8.7.2. Class Definitions

Table 32. Classes used in Generics

Class Description

GenericLogicalSpace
«TopLevelFeatureType»

A GenericLogicalSpace is a space that is not represented by any explicitly
modelled AbstractLogicalSpace subclass within CityGML.

GenericOccupiedSpace
«TopLevelFeatureType»

A GenericOccupiedSpace is a space that is not represented by any
explicitly modelled AbstractOccupiedSpace subclass within CityGML.

GenericThematicSurfac
e
«TopLevelFeatureType»

A GenericThematicSurface is a surface that is not represented by any
explicitly modelled AbstractThematicSurface subclass within CityGML.

GenericUnoccupiedSpa
ce
«TopLevelFeatureType»

A GenericUnoccupiedSpace is a space that is not represented by any
explicitly modelled AbstractUnoccupiedSpace subclass within CityGML.

Table 33. Data Types used in Generics

Name Description

ADEOfGenericLogicalS
pace
«DataType»

ADEOfGenericLogicalSpace acts as a hook to define properties within an
ADE that are to be added to a GenericLogicalSpace.

ADEOfGenericOccupied
Space
«DataType»

ADEOfGenericOccupiedSpace acts as a hook to define properties within
an ADE that are to be added to a GenericOccupiedSpace.

ADEOfGenericThematic
Surface
«DataType»

ADEOfGenericThematicSurface acts as a hook to define properties within
an ADE that are to be added to a GenericThematicSurface.

ADEOfGenericUnoccupi
edSpace
«DataType»

ADEOfGenericUnoccupiedSpace acts as a hook to define properties within
an ADE that are to be added to a GenericUnoccupiedSpace.

CodeAttribute
«DataType»

CodeAttribute is a data type used to define generic attributes of type
"Code".

DateAttribute
«DataType»

DateAttribute is a data type used to define generic attributes of type
"Date".

78

DoubleAttribute
«DataType»

DoubleAttribute is a data type used to define generic attributes of type
"Double".

GenericAttributeSet
«DataType»

A GenericAttributeSet is a named collection of generic attributes.

IntAttribute
«DataType»

IntAttribute is a data type used to define generic attributes of type
"Integer".

MeasureAttribute
«DataType»

MeasureAttribute is a data type used to define generic attributes of type
"Measure".

StringAttribute
«DataType»

StringAttribute is a data type used to define generic attributes of type
"String".

UriAttribute
«DataType»

UriAttribute is a data type used to define generic attributes of type "URI".

Table 34. CodeList Classes used in Generics

Name Description

GenericLogicalSpaceCla
ssValue
«CodeList»

GenericLogicalSpaceClassValue is a code list used to further classify a
GenericLogicalSpace.

GenericLogicalSpaceFu
nctionValue
«CodeList»

GenericLogicalSpaceFunctionValue is a code list that enumerates the
different purposes of a GenericLogicalSpace.

GenericLogicalSpaceUs
ageValue
«CodeList»

GenericLogicalSpaceUsageValue is a code list that enumerates the
different uses of a GenericLogicalSpace.

GenericOccupiedSpace
ClassValue
«CodeList»

GenericOccupiedSpaceClassValue is a code list used to further classify a
GenericOccupiedSpace.

GenericOccupiedSpace
FunctionValue
«CodeList»

GenericOccupiedSpaceFunctionValue is a code list that enumerates the
different purposes of a GenericOccupiedSpace.

GenericOccupiedSpace
UsageValue
«CodeList»

GenericOccupiedSpaceUsageValue is a code list that enumerates the
different uses of a GenericOccupiedSpace.

GenericThematicSurfac
eClassValue
«CodeList»

GenericThematicSurfaceClassValue is a code list used to further classify a
GenericThematicSurface.

GenericThematicSurfac
eFunctionValue
«CodeList»

GenericThematicSurfaceFunctionValue is a code list that enumerates the
different purposes of a GenericThematicSurface.

79

GenericThematicSurfac
eUsageValue
«CodeList»

GenericThematicSurfaceUsageValue is a code list that enumerates the
different uses of a GenericThematicSurface.

GenericUnoccupiedSpa
ceClassValue
«CodeList»

GenericUnoccupiedSpaceClassValue is a code list used to further classify
a GenericUnoccupiedSpace.

GenericUnoccupiedSpa
ceFunctionValue
«CodeList»

GenericUnoccupiedSpaceFunctionValue is a code list that enumerates the
different purposes of a GenericUnoccupiedSpace.

GenericUnoccupiedSpa
ceUsageValue
«CodeList»

GenericUnoccupiedSpaceUsageValue is a code list that enumerates the
different uses of a GenericUnoccupiedSpace.

8.7.3. Additional Information

Additional information about the Generics Module can be found in the OGC CityGML 3.0 Users
Guide

8.8. Land Use

Requirements Class

http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-landuse

Target type Implementation Specification

Dependency /req/req-class-core

The LandUse module defines objects that can be used to describe areas of the earth’s surface
dedicated to a specific land use or having a specific land cover with or without vegetation, such as
sand, rock, mud flats, forest, grasslands, or wetlands (i.e. the physical appearance). Land use and
land cover are different concepts. The first describes human activities on the earth’s surface, the
second describes its physical and biological cover. However, the two concepts are interlinked and
often mixed in practice. Land use objects in CityGML support both concepts: They can be employed
to represent parcels, spatial planning objects, recreational objects, and objects describing the
physical characteristics of an area in 3D. Land use objects are represented in the UML model by the
top-level feature type LandUse, which is also the only class of the LandUse module.

The UML diagram of the LandUse module is depicted in Figure 35. A detailed discussion of this
Requirements Class can be found in the CityGML User Guide.

80

http://docs.opengeospatial.org/DRAFTS/20-066.html
http://docs.opengeospatial.org/DRAFTS/20-066.html
http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-landuse
https://github.com/opengeospatial/CityGML3-Workspace/blob/master/19-072UG.html#bp_landuse_section

Figure 35. UML diagram of the Land Use Model.

The ADE data types provided for the Land Use module are illustrated in Figure 36.

Figure 36. ADE classes of the CityGML Land Use module.

The Code Lists provided for the Land Use module are illustrated in Figure 37.

Figure 37. Codelists from the CityGML Land Use module.

8.8.1. Requirements

The following requirement defines the rules governing implementation of the CityGML Land Use
Module as an Implementation Specification.

81

Requirement 19 /req/landuse/classes

For each UML class defined or referenced in the LandUse Package:

A The Implementation Specification SHALL contain an element
which represents the same concept as that defined for the UML
class.

B The Implementation Specification SHALL represent associations
with the same source, target, direction, roles, and multiplicities as
those of the UML class.

C The implementation Specification SHALL represent the attributes
of the UML class including the name, definition, type, and
multiplicity.

D The implementation Specification SHALL represent the attributes
of all superclasses of the UML class including the name,
definition, type, and multiplicity.

E The implementation Specification SHALL represent the
associations of all superclasses of the UML class including the
source, target, direction, roles, and multiplicity.

F The Implementation Specification SHALL specify how an
implementation observes all constraints the Conceptual Model
imposes on the UML class.

The use of extension capabilities by Land Use elements is constrained by the following
requirement:

Requirement 20 /req/landuse/ade/use

ADE element and property extensions SHALL NOT be used unless conformance with the
ADE Requirements Class can be demonstrated.

8.8.2. Class Definitions

Table 35. Classes used in LandUse

Class Description

LandUse
«TopLevelFeatureType»

A LandUse object is an area of the earth’s surface dedicated to a specific
land use or having a specific land cover with or without vegetation, such
as sand, rock, mud flats, forest, grasslands, or wetlands.

Table 36. Data Types used in LandUse

Name Description

ADEOfLandUse
«DataType»

ADEOfLandUse acts as a hook to define properties within an ADE that are
to be added to a LandUse.

Table 37. CodeList Classes used in LandUse

82

Name Description

LandUseClassValue
«CodeList»

LandUseClassValue is a code list used to further classify a LandUse.

LandUseFunctionValue
«CodeList»

LandUseFunctionValue is a code list that enumerates the different
purposes of a LandUse.

LandUseUsageValue
«CodeList»

LandUseUsageValue is a code list that enumerates the different uses of a
LandUse.

8.8.3. Additional Information

Additional information about the Land Use Module can be found in the OGC CityGML 3.0 Users
Guide

8.9. Point Cloud

Requirements Class

http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-pointcloud

Target type Implementation Specification

Dependency /req/req-class-core

The PointCloud module specifies how to encode the geometry of physical spaces and of thematic
surfaces as 3D point clouds. In this way, the building hull, a room within a building or a single wall
surface can be spatially represented by a point cloud only. The same applies to all other thematic
feature types including transportation objects, vegetation, city furniture, etc. Point clouds can either
be provided inline within a CityGML file or as reference to external point cloud files of common file
types such as LAS or LAZ. Point clouds are represented in the UML model by the feature type
PointCloud, which is also the only class of the PointCloud module.

The UML diagram of the PointCloud module is depicted in Figure 38. A detailed discussion of this
Requirements Class can be found in the CityGML User Guide.

83

http://docs.opengeospatial.org/DRAFTS/20-066.html
http://docs.opengeospatial.org/DRAFTS/20-066.html
http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-pointcloud
https://github.com/opengeospatial/CityGML3-Workspace/blob/master/19-072UG.html#bp_pointcloud_section

Figure 38. UML diagram of the Point Cloud Model.

The ADE data types provided for the Point Cloud module are illustrated in Figure 39.

Figure 39. ADE classes of the CityGML Point Cloud module.

8.9.1. Requirements

The following requirement defines the rules governing implementation of the CityGML Point Cloud
Module as an Implementation Specification.

Requirement 21 /req/pointcloud/classes

For each UML class defined or referenced in the PointCloud Package:

A The Implementation Specification SHALL contain an element
which represents the same concept as that defined for the UML
class.

B The Implementation Specification SHALL represent associations
with the same source, target, direction, roles, and multiplicities as
those of the UML class.

84

C The implementation Specification SHALL represent the attributes
of the UML class including the name, definition, type, and
multiplicity.

D The implementation Specification SHALL represent the attributes
of all superclasses of the UML class including the name,
definition, type, and multiplicity.

E The implementation Specification SHALL represent the
associations of all superclasses of the UML class including the
source, target, direction, roles, and multiplicity.

F The Implementation Specification SHALL specify how an
implementation observes all constraints the Conceptual Model
imposes on the UML class.

The use of extension capabilities by Point Cloud elements is constrained by the following
requirement:

Requirement 22 /req/pointcloud/ade/use

ADE element and property extensions SHALL NOT be used unless conformance with the
ADE Requirements Class can be demonstrated.

8.9.2. Class Definitions

Table 38. Classes used in PointCloud

Class Description

PointCloud
«FeatureType»

A PointCloud is an unordered collection of points that is a sampling of the
geometry of a space or space boundary.

ADEOfPointCloud
«DataType»

ADEOfPointCloud acts as a hook to define properties within an ADE that
are to be added to a PointCloud.

8.9.3. Additional Information

Additional information about the Point Cloud Module can be found in the OGC CityGML 3.0 Users
Guide

8.10. Relief

Requirements Class

http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-relief

Target type Implementation Specification

Dependency /req/req-class-core

The Relief module provides the representation of terrain which is an essential part of city models.
In CityGML, the terrain is modelled by relief features. They are represented in the UML model by

85

http://docs.opengeospatial.org/DRAFTS/20-066.html
http://docs.opengeospatial.org/DRAFTS/20-066.html
http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-relief

the top-level feature type ReliefFeature, which is the main class of the Relief module. The relief
features, in turn, are collections of relief components that describe the Earth’s surface, also known
as the Digital Terrain Model. The relief components can have different terrain representations
which can coexist. Each relief component may be specified as a regular raster or grid, as a TIN
(Triangulated Irregular Network), by break lines, or by mass points. In addition, the validity of the
relief components may be restricted to certain areas.

The UML diagram of the Relief module is depicted in Figure 40. A detailed discussion of this
Requirements Class can be found in the CityGML User Guide.

Figure 40. UML diagram of Relief module.

The ADE data types provided for the Relief module are illustrated in Figure 41.

Figure 41. ADE classes of the CityGML Relief module.

86

https://github.com/opengeospatial/CityGML3-Workspace/blob/master/19-072UG.html#bp_relief_section

8.10.1. Requirements

The following requirement defines the rules governing implementation of the CityGML Relief
Module as an Implementation Specification.

Requirement 23 /req/relief/classes

For each UML class defined or referenced in the Relief Package:

A The Implementation Specification SHALL contain an element
which represents the same concept as that defined for the UML
class.

B The Implementation Specification SHALL represent associations
with the same source, target, direction, roles, and multiplicities as
those of the UML class.

C The implementation Specification SHALL represent the attributes
of the UML class including the name, definition, type, and
multiplicity.

D The implementation Specification SHALL represent the attributes
of all superclasses of the UML class including the name,
definition, type, and multiplicity.

E The implementation Specification SHALL represent the
associations of all superclasses of the UML class including the
source, target, direction, roles, and multiplicity.

F The Implementation Specification SHALL specify how an
implementation observes all constraints the Conceptual Model
imposes on the UML class.

The use of extension capabilities by Relief elements is constrained by the following requirement:

Requirement 24 /req/relief/ade/use

ADE element and property extensions SHALL NOT be used unless conformance with the
ADE Requirements Class can be demonstrated.

8.10.2. Class Definitions

Table 39. Classes used in Relief

Class Description

ReliefFeature
«TopLevelFeatureType»

A ReliefFeature is a collection of terrain components representing the
Earth’s surface, also known as the Digital Terrain Model.

AbstractReliefCompone
nt
«FeatureType»

An AbstractReliefComponent represents an element of the terrain surface
- either a TIN, a raster or grid, mass points or break lines.

BreaklineRelief
«FeatureType»

A BreaklineRelief represents a terrain component with 3D lines. These
lines denote break lines or ridge/valley lines.

87

MassPointRelief
«FeatureType»

A MassPointRelief represents a terrain component as a collection of 3D
points.

RasterRelief
«FeatureType»

A RasterRelief represents a terrain component as a regular raster or grid.

TINRelief
«FeatureType»

A TINRelief represents a terrain component as a triangulated irregular
network.

Table 40. Data Types used in Relief

Name Description

ADEOfAbstractReliefCo
mponent
«DataType»

ADEOfAbstractReliefComponent acts as a hook to define properties
within an ADE that are to be added to AbstractReliefComponent.

ADEOfBreaklineRelief
«DataType»

ADEOfBreaklineRelief acts as a hook to define properties within an ADE
that are to be added to a BreaklineRelief.

ADEOfMassPointRelief
«DataType»

ADEOfMassPointRelief acts as a hook to define properties within an ADE
that are to be added to a MassPointRelief.

ADEOfRasterRelief
«DataType»

ADEOfRasterRelief acts as a hook to define properties within an ADE that
are to be added to a RasterRelief.

ADEOfReliefFeature
«DataType»

ADEOfReliefFeature acts as a hook to define properties within an ADE
that are to be added to a ReliefFeature.

ADEOfTINRelief
«DataType»

ADEOfTINRelief acts as a hook to define properties within an ADE that
are to be added to a TINRelief.

8.10.3. Additional Information

Additional information about the Relief Module can be found in the OGC CityGML 3.0 Users Guide

8.11. Transportation

Requirements Class

http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-transportation

Target type Implementation Specification

Dependency /req/req-class-core

The Transportation module defines central elements of the traffic infrastructure. This includes the
transportation objects road, track, and square for the movement of vehicles, bicycles, and
pedestrians, the transportation object railway for the movement of wheeled vehicles on rails, as
well as the transportation object waterway for the movement of vessels upon or within water
bodies. The transportation objects are represented in the UML model by the top-level feature types
Road, Track, Square, Railway, and Waterway, which are the main classes of the Transportation
module. Transportation objects can be subdivided into sections, which can be regular road, track or
railway legs, into intersection areas, and into roundabouts.

88

http://docs.opengeospatial.org/DRAFTS/20-066.html
http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-transportation

For each transportation object, traffic spaces and auxiliary traffic spaces can be provided, which
are bounded at the bottom by traffic areas and auxiliary traffic areas, respectively. Traffic areas are
elements that are important in terms of traffic usage, such as driving lanes, sidewalks, and cycle
lanes, whereas auxiliary traffic areas describe further elements, such as curbstones, middle lanes,
and green areas. The corresponding spaces define the free space above the areas. In addition, each
traffic space can have an optional clearance space. The transportation objects can be represented in
different levels of granularity, either as a single area, split up into individual lanes or even
decomposed into individual (carriage)ways. Furthermore, holes in the surfaces of roads, tracks or
squares, such as road damages, manholes or drains, can be represented including their
corresponding boundary surfaces. In addition, markings for the structuring or restriction of traffic
can be added to the transportation areas. Examples are road markings and markings related to
railway or waterway traffic.

The UML diagram of the Transportation module is depicted in Figure 42. A detailed discussion of
this Requirements Class can be found in the CityGML 3.0 Users Guide.

Figure 42. UML diagram of the Transportation Model.

The ADE data types provided for the Transportation module are illustrated in Figure 43.

89

http://docs.opengeospatial.org/DRAFTS/20-066.html

Figure 43. ADE classes of the CityGML Transportation module.

The Code Lists provided for the Transportation module are illustrated in Figure 44.

Figure 44. Codelists from the CityGML Transportation module.

Table 41 lists the surfaces that are allowed as thematic surface boundaries of the space classes
defined in the Transportation module:

Table 41. Transportation space classes and their allowed thematic surface boundaries

90

Space class Allowed space boundaries

AbstractTransportation
Space

• Transportation::Marking

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

AuxiliaryTrafficSpace • Transportation::AuxiliaryTrafficArea

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

ClearanceSpace • Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

Hole • Transportation::HoleSurface

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

Intersection • Transportation::Marking

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

Railway • Transportation::Marking

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

Road • Transportation::Marking

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

91

Section • Transportation::Marking

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

Square • Transportation::Marking

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

Track • Transportation::Marking

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

TrafficSpace • Transportation::TrafficArea

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

Waterway • Transportation::Marking

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

8.11.1. Requirements

The following requirement defines the rules governing implementation of the CityGML
Transportation Module as an Implementation Specification.

Requirement 25 /req/transportation/classes

For each UML class defined or referenced in the Transportation Package:

A The Implementation Specification SHALL contain an element
which represents the same concept as that defined for the UML
class.

B The Implementation Specification SHALL represent associations
with the same source, target, direction, roles, and multiplicities as
those of the UML class.

92

C The implementation Specification SHALL represent the attributes
of the UML class including the name, definition, type, and
multiplicity.

D The implementation Specification SHALL represent the attributes
of all superclasses of the UML class including the name,
definition, type, and multiplicity.

E The implementation Specification SHALL represent the
associations of all superclasses of the UML class including the
source, target, direction, roles, and multiplicity.

F The Implementation Specification SHALL specify how an
implementation observes all constraints the Conceptual Model
imposes on the UML class.

The implementation of this Module is further constrained by the following spatial boundary
requirement:

Requirement 26 /req/transportation/boundaries

Table 41 lists the surfaces that are allowed as thematic surface boundaries of the space
classes defined in the Transportation module. An Implementation Specification SHALL
only support the boundaries described in Table 41

The use of extension capabilities by Transportation elements is constrained by the following
requirement:

Requirement 27 /req/transportation/ade/use

ADE element and property extensions SHALL NOT be used unless conformance with the
ADE Requirements Class can be demonstrated.

8.11.2. Class Definitions

Table 42. Classes used in Transportation

Class Description

Railway
«TopLevelFeatureType»

A Railway is a transportation space used by wheeled vehicles on rails.

Road
«TopLevelFeatureType»

A Road is a transportation space used by vehicles, bicycles and/or
pedestrians.

Square
«TopLevelFeatureType»

A Square is a transportation space for unrestricted movement for
vehicles, bicycles and/or pedestrians. This includes plazas as well as large
sealed surfaces such as parking lots.

Track
«TopLevelFeatureType»

A Track is a small path mainly used by pedestrians. Tracks can be
segmented into Sections and Intersections.

Waterway
«TopLevelFeatureType»

A Waterway is a transportation space used for the movement of vessels
upon or within a water body.

93

AbstractTransportation
Space
«FeatureType»

AbstractTransportationSpace is the abstract superclass of transportation
objects such as Roads, Tracks, Railways, Waterways or Squares.

AuxiliaryTrafficArea
«FeatureType»

An AuxiliaryTrafficArea is the ground surface of an
AuxiliaryTrafficSpace.

AuxiliaryTrafficSpace
«FeatureType»

An AuxiliaryTrafficSpace is a space within the transportation space not
intended for traffic purposes.

ClearanceSpace
«FeatureType»

A ClearanceSpace represents the actual free space above a TrafficArea
within which a mobile object can move without contacting an
obstruction.

Hole
«FeatureType»

A Hole is an opening in the surface of a Road, Track or Square such as
road damages, manholes or drains. Holes can span multiple
transportation objects.

HoleSurface
«FeatureType»

A HoleSurface is a representation of the ground surface of a hole.

Intersection
«FeatureType»

An Intersection is a transportation space that is a shared segment of
multiple Road, Track, Railway, or Waterway objects (e.g. a crossing of two
roads or a level crossing of a road and a railway).

Marking
«FeatureType»

A Marking is a visible pattern on a transportation area relevant to the
structuring or restriction of traffic. Examples are road markings and
markings related to railway or waterway traffic.

Section
«FeatureType»

A Section is a transportation space that is a segment of a Road, Railway,
Track, or Waterway.

TrafficArea
«FeatureType»

A TrafficArea is the ground surface of a TrafficSpace. Traffic areas are the
surfaces upon which traffic actually takes place.

TrafficSpace
«FeatureType»

A TrafficSpace is a space in which traffic takes place. Traffic includes the
movement of entities such as trains, vehicles, pedestrians, ships, or other
transportation types.

Table 43. Data Types used in Transportation

Name Description

ADEOfAbstractTranspo
rtationSpace
«DataType»

ADEOfAbstractTransportationSpace acts as a hook to define properties
within an ADE that are to be added to AbstractTransportationSpace.

ADEOfAuxiliaryTraffic
Area
«DataType»

ADEOfAuxiliaryTrafficArea acts as a hook to define properties within an
ADE that are to be added to an AuxiliaryTrafficArea.

ADEOfAuxiliaryTrafficS
pace
«DataType»

ADEOfAuxiliaryTrafficSpace acts as a hook to define properties within an
ADE that are to be added to an AuxiliaryTrafficSpace.

94

ADEOfClearanceSpace
«DataType»

ADEOfClearanceSpace acts as a hook to define properties within an ADE
that are to be added to a ClearanceSpace.

ADEOfHole
«DataType»

ADEOfHole acts as a hook to define properties within an ADE that are to
be added to a Hole.

ADEOfHoleSurface
«DataType»

ADEOfHoleSurface acts as a hook to define properties within an ADE that
are to be added to a HoleSurface.

ADEOfIntersection
«DataType»

ADEOfIntersection acts as a hook to define properties within an ADE that
are to be added to an Intersection.

ADEOfMarking
«DataType»

ADEOfMarking acts as a hook to define properties within an ADE that are
to be added to a Marking.

ADEOfRailway
«DataType»

ADEOfRailway acts as a hook to define properties within an ADE that are
to be added to a Railway.

ADEOfRoad
«DataType»

ADEOfRoad acts as a hook to define properties within an ADE that are to
be added to a Road.

ADEOfSection
«DataType»

ADEOfSection acts as a hook to define properties within an ADE that are
to be added to a Section.

ADEOfSquare
«DataType»

ADEOfSquare acts as a hook to define properties within an ADE that are
to be added to a Square.

ADEOfTrack
«DataType»

ADEOfTrack acts as a hook to define properties within an ADE that are to
be added to a Track.

ADEOfTrafficArea
«DataType»

ADEOfTrafficArea acts as a hook to define properties within an ADE that
are to be added to a TrafficArea.

ADEOfTrafficSpace
«DataType»

ADEOfTrafficSpace acts as a hook to define properties within an ADE that
are to be added to a TrafficSpace.

ADEOfWaterway
«DataType»

ADEOfWaterway acts as a hook to define properties within an ADE that
are to be added to a Waterway.

Table 44. Enumerated Classes used in Transportation

Name Description

GranularityValue
«Enumeration»

GranularityValue enumerates the different levels of granularity in which
transportation objects are represented.

TrafficDirectionValue
«Enumeration»

TrafficDirectionValue enumerates the allowed directions of travel of a
mobile object.

Table 45. CodeList Classes used in Transportation

Name Description

AuxiliaryTrafficAreaCl
assValue
«CodeList»

AuxiliaryTrafficAreaClassValue is a code list used to further classify an
AuxiliaryTrafficArea.

95

AuxiliaryTrafficAreaFu
nctionValue
«CodeList»

AuxiliaryTrafficAreaFunctionValue is a code list that enumerates the
different purposes of an AuxiliaryTrafficArea.

AuxiliaryTrafficAreaUs
ageValue
«CodeList»

AuxiliaryTrafficAreaUsageValue is a code list that enumerates the
different uses of an AuxiliaryTrafficArea.

AuxiliaryTrafficSpaceCl
assValue
«CodeList»

AuxiliaryTrafficSpaceClassValue is a code list used to further classify an
AuxiliaryTrafficSpace.

AuxiliaryTrafficSpaceF
unctionValue
«CodeList»

AuxiliaryTrafficSpaceFunctionValue is a code list that enumerates the
different purposes of an AuxiliaryTrafficSpace.

AuxiliaryTrafficSpaceU
sageValue
«CodeList»

AuxiliaryTrafficSpaceUsageValue is a code list that enumerates the
different uses of an AuxiliaryTrafficSpace.

ClearanceSpaceClassVa
lue
«CodeList»

ClearanceSpaceClassValue is a code list used to further classify a
ClearanceSpace.

HoleClassValue
«CodeList»

HoleClassValue is a code list used to further classify a Hole.

IntersectionClassValue
«CodeList»

IntersectionClassValue is a code list used to further classify an
Intersection.

MarkingClassValue
«CodeList»

MarkingClassValue is a code list used to further classify a Marking.

RailwayClassValue
«CodeList»

RailwayClassValue is a code list used to further classify a Railway.

RailwayFunctionValue
«CodeList»

RailwayFunctionValue is a code list that enumerates the different
purposes of a Railway.

RailwayUsageValue
«CodeList»

RailwayUsageValue is a code list that enumerates the different uses of a
Railway.

RoadClassValue
«CodeList»

RoadClassValue is a code list used to further classify a Road.

RoadFunctionValue
«CodeList»

RoadFunctionValue is a code list that enumerates the different purposes
of a Road.

RoadUsageValue
«CodeList»

RoadUsageValue is a code list that enumerates the different uses of a
Road.

SectionClassValue
«CodeList»

SectionClassValue is a code list used to further classify a Section.

SquareClassValue
«CodeList»

SquareClassValue is a code list used to further classify a Square.

96

SquareFunctionValue
«CodeList»

SquareFunctionValue is a code list that enumerates the different
purposes of a Square.

SquareUsageValue
«CodeList»

SquareUsageValue is a code list that enumerates the different uses of a
Square.

SurfaceMaterialValue
«CodeList»

SurfaceMaterialValue is a code list that enumerates the different surface
materials.

TrackClassValue
«CodeList»

TrackClassValue is a code list used to further classify a Track.

TrackFunctionValue
«CodeList»

TrackFunctionValue is a code list that enumerates the different purposes
of a Track.

TrackUsageValue
«CodeList»

TrackUsageValue is a code list that enumerates the different uses of a
Track.

TrafficAreaClassValue
«CodeList»

TrafficAreaClassValue is a code list used to further classify a TrafficArea.

TrafficAreaFunctionVal
ue
«CodeList»

TrafficAreaFunctionValue is a code list that enumerates the different
purposes of a TrafficArea.

TrafficAreaUsageValue
«CodeList»

TrafficAreaUsageValue is a code list that enumerates the different uses of
a TrafficArea.

TrafficSpaceClassValue
«CodeList»

TrafficSpaceClassValue is a code list used to further classify a
TrafficSpace.

TrafficSpaceFunctionV
alue
«CodeList»

TrafficSpaceFunctionValue is a code list that enumerates the different
purposes of a TrafficSpace.

TrafficSpaceUsageValue
«CodeList»

TrafficSpaceUsageValue is a code list that enumerates the different uses
of a TrafficSpace.

WaterwayClassValue
«CodeList»

WaterwayClassValue is a code list used to further classify a Waterway.

WaterwayFunctionValu
e
«CodeList»

WaterwayFunctionValue is a code list that enumerates the different
purposes of a Waterway.

WaterwayUsageValue
«CodeList»

WaterwayUsageValue is a code list that enumerates the different uses of a
Waterway.

8.11.3. Additional Information

Additional information about the Transportation Module can be found in the OGC CityGML 3.0
Users Guide

97

http://docs.opengeospatial.org/DRAFTS/20-066.html
http://docs.opengeospatial.org/DRAFTS/20-066.html

8.12. Vegetation

Requirements Class

http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-vegetation

Target type Implementation Specification

Dependency /req/req-class-core

The Vegetation module defines the concepts to represent vegetation within city models. Vegetation
can be represented either as solitary vegetation objects, such as trees, bushes and ferns, or as
vegetation areas that are covered by plants of a given species or a typical mixture of plant species,
such as forests, steppes and wet meadows. Vegetation is represented in the UML model by the top-
level feature types SolitaryVegetationObject and PlantCover, which are also the only classes of the
Vegetation module.

The UML diagram of the Vegetation module is depicted in Figure 45. A detailed discussion of this
Requirements Class can be found in the CityGML User Guide.

Figure 45. UML diagram of the Vegetation Model.

The ADE data types provided for the Vegetation module are illustrated in Figure 46.

98

http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-vegetation
https://github.com/opengeospatial/CityGML3-Workspace/blob/master/19-072UG.html#bp_vegetation_section

Figure 46. ADE classes of the CityGML Vegetation module.

The Code Lists provided for the Vegetation module are illustrated in Figure 47.

Figure 47. Codelists from the CityGML Vegetation module.

Table 46 lists the surfaces that are allowed as thematic surface boundaries of the space classes
defined in the Vegetation module.

Table 46. Vegetation space classes and their allowed thematic surface boundaries

Space class Allowed space boundaries

AbstractVegetationObje
ct

No boundaries allowed

PlantCover No boundaries allowed

SolitaryVegetationObje
ct

No boundaries allowed

8.12.1. Requirements

The following requirement defines the rules governing implementation of the CityGML Vegetation
Module as an Implementation Specification.

Requirement 28 /req/vegetation/classes

99

For each UML class defined or referenced in the Vegetation Package:

A The Implementation Specification SHALL contain an element
which represents the same concept as that defined for the UML
class.

B The Implementation Specification SHALL represent associations
with the same source, target, direction, roles, and multiplicities as
those of the UML class.

C The implementation Specification SHALL represent the attributes
of the UML class including the name, definition, type, and
multiplicity.

D The implementation Specification SHALL represent the attributes
of all superclasses of the UML class including the name,
definition, type, and multiplicity.

E The implementation Specification SHALL represent the
associations of all superclasses of the UML class including the
source, target, direction, roles, and multiplicity.

F The Implementation Specification SHALL specify how an
implementation observes all constraints the Conceptual Model
imposes on the UML class.

The implementation of this Module is further constrained by the following spatial boundary
requirement:

Requirement 29 /req/vegetation/boundaries

Table 46 lists the surfaces that are allowed as thematic surface boundaries of the space
classes defined in the Vegetation module. An Implementation Specification SHALL only
support the boundaries described in Table 46

The use of extension capabilities by Vegetation elements is constrained by the following
requirement:

Requirement 30 /req/vegetation/ade/use

ADE element and property extensions SHALL NOT be used unless conformance with the
ADE Requirements Class can be demonstrated.

8.12.2. Class Definitions

Table 47. Classes used in Vegetation

Class Description

PlantCover
«TopLevelFeatureType»

A PlantCover represents a space covered by vegetation.

100

SolitaryVegetationObje
ct
«TopLevelFeatureType»

A SolitaryVegetationObject represents individual vegetation objects, e.g.
trees or bushes.

AbstractVegetationObje
ct
«FeatureType»

AbstractVegetationObject is the abstract superclass for all kinds of
vegetation objects.

Table 48. Data Types used in Vegetation

Name Description

ADEOfAbstractVegetati
onObject
«DataType»

ADEOfAbstractVegetationObject acts as a hook to define properties within
an ADE that are to be added to AbstractVegetationObject.

ADEOfPlantCover
«DataType»

ADEOfPlantCover acts as a hook to define properties within an ADE that
are to be added to a PlantCover.

ADEOfSolitaryVegetatio
nObject
«DataType»

ADEOfSolitaryVegetationObject acts as a hook to define properties within
an ADE that are to be added to a SolitaryVegetationObject.

Table 49. CodeList Classes used in Vegetation

Name Description

PlantCoverClassValue
«CodeList»

PlantCoverClassValue is a code list used to further classify a PlantCover.

PlantCoverFunctionVal
ue
«CodeList»

PlantCoverFunctionValue is a code list that enumerates the different
purposes of a PlantCover.

PlantCoverUsageValue
«CodeList»

PlantCoverUsageValue is a code list that enumerates the different uses of
a PlantCover.

SolitaryVegetationObje
ctClassValue
«CodeList»

SolitaryVegetationObjectClassValue is a code list used to further classify a
SolitaryVegetationObject.

SolitaryVegetationObje
ctFunctionValue
«CodeList»

SolitaryVegetationObjectFunctionValue is a code list that enumerates the
different purposes of a SolitaryVegetationObject.

SolitaryVegetationObje
ctUsageValue
«CodeList»

SolitaryVegetationObjectUsageValue is a code list that enumerates the
different uses of a SolitaryVegetationObject.

SpeciesValue
«CodeList»

A SpeciesValue is a code list that enumerates the species of a
SolitaryVegetationObject.

8.12.3. Additional Information

Additional information about the Transportation Module can be found in the OGC CityGML 3.0

101

http://docs.opengeospatial.org/DRAFTS/20-066.html

Users Guide

8.13. Versioning

Requirements Class

http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-versioning

Target type Implementation Specification

Dependency /req/req-class-core

The Versioning module defines the concepts that enable encoding representing multiple versions of
a city model. A specific version represents a defined state of a city model consisting of the dedicated
versions of all city object instances that belong to the respective city model version. Each version
can be complemented by version transitions that describe the change of the state of a city model
from one version to another and that give the reason for the change and the modifications applied.
In addition, the Versioning module introduces bitemporal timestamps for all objects. This allows for
providing all objects with information on 1) the time period a specific version of an object is an
integral part of the 3D city model and 2) the lifespan a specific version of an object exists in the real
world.

By using the Versioning module, slow changes over a long time period with respect to cities and city
models can be represented. This includes the creation and termination of objects (e.g. construction
or demolition of sites, planting of trees, construction of new roads), structural changes of objects
(e.g. extension of buildings), and changes in the status of an object (e.g. change of building owner,
change of the traffic direction of a road to a one-way street). In this way, the history or evolution of
cities and city models can be modelled, parallel or alternative versions of cities and city models can
be managed, and changes of geometries and thematic properties of individual city objects over time
can be tracked.

The UML diagram of the Versioning module is depicted in Figure 48. A detailed discussion of this
Requirements Class can be found in the CityGML User Guide.

102

http://docs.opengeospatial.org/DRAFTS/20-066.html
http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-versioning
https://github.com/opengeospatial/CityGML3-Workspace/blob/master/19-072UG.html#bp_versioning_section

Figure 48. UML diagram of the Versioning Model.

The ADE data types provided for the Versioning module are illustrated in Figure 49.

Figure 49. ADE classes of the CityGML Versioning module.

8.13.1. Requirements

The following requirement defines the rules governing implementation of the CityGML Versioning
Module as an Implementation Specification.

Requirement 31 /req/versioning/classes

For each UML class defined or referenced in the Versioning Package:

A The Implementation Specification SHALL contain an element
which represents the same concept as that defined for the UML
class.

B The Implementation Specification SHALL represent associations
with the same source, target, direction, roles, and multiplicities as
those of the UML class.

103

C The implementation Specification SHALL represent the attributes
of the UML class including the name, definition, type, and
multiplicity.

D The implementation Specification SHALL represent the attributes
of all superclasses of the UML class including the name,
definition, type, and multiplicity.

E The implementation Specification SHALL represent the
associations of all superclasses of the UML class including the
source, target, direction, roles, and multiplicity.

F The Implementation Specification SHALL specify how an
implementation observes all constraints the Conceptual Model
imposes on the UML class.

The use of extension capabilities by Versioning elements is constrained by the following
requirement:

Requirement 32 /req/versioning/ade/use

ADE element and property extensions SHALL NOT be used unless conformance with the
ADE Requirements Class can be demonstrated.

8.13.2. Class Definitions

Table 50. Classes used in Versioning

Class Description

Version
«FeatureType»

Version represents a defined state of a city model consisting of the
dedicated versions of all city object instances that belong to the respective
city model version. Versions can have names, a description and can be
labeled with an arbitrary number of user defined tags.

VersionTransition
«FeatureType»

VersionTransition describes the change of the state of a city model from
one version to another. Version transitions can have names, a description
and can be further qualified by a type and a reason.

Table 51. Data Types used in Versioning

Name Description

ADEOfVersion
«DataType»

ADEOfVersion acts as a hook to define properties within an ADE that are
to be added to a Version.

ADEOfVersionTransitio
n
«DataType»

ADEOfVersionTransition acts as a hook to define properties within an
ADE that are to be added to a VersionTransition.

104

Transaction
«DataType»

Transaction represents a modification of the city model by the creation,
termination, or replacement of a specific city object. While the creation of
a city object also marks its first object version, the termination marks the
end of existence of a real world object and, hence, also terminates the
final version of a city object. The replacement of a city object means that
a specific version of it is replaced by a new version.

Table 52. Enumerated Classes used in Versioning

Name Description

TransactionTypeValue
«Enumeration»

TransactionTypeValue enumerates the three possible types of
transactions: insert, delete, or replace.

TransitionTypeValue
«Enumeration»

TransitionTypeValue enumerates the different kinds of version
transitions. “planned” and “fork” should be used in cases when from one
city model version multiple successor versions are being created.
“realized” and “merge” should be used when different city model
versions are converging into a common successor version.

8.13.3. Additional Information

Additional information about the Transportation Module can be found in the OGC CityGML 3.0
Users Guide

8.14. Water Body

Requirements Class

http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-waterbody

Target type Implementation Specification

Dependency /req/req-class-core

The WaterBody module provides the representation of significant and permanent or semi-
permanent accumulations of surface water, usually covering a part of the Earth. Examples of such
water bodies that can be modelled with CityGML are rivers, canals, lakes, and basins. Water bodies
are represented in the UML model by the top-level feature type WaterBody, which is the main class
of the WaterBody module.

Water bodies can be bounded by water surfaces, which represent the upper exterior interface
between the water body and the atmosphere, and by water ground surfaces, which represent the
exterior boundary surfaces of the submerged bottom of a water body (e.g. DTM or floor of a 3D
basin object). Water surfaces are dynamic surfaces, thus, the visible water surface can regularly as
well as irregularly change in height and covered area due to natural forces such as tides and floods.

The UML diagram of the WaterBody module is depicted in Figure 50. A detailed discussion of this
Requirements Class can be found in the CityGML User Guide.

105

http://docs.opengeospatial.org/DRAFTS/20-066.html
http://docs.opengeospatial.org/DRAFTS/20-066.html
http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-waterbody
https://github.com/opengeospatial/CityGML3-Workspace/blob/master/19-072UG.html#bp_waterbody_section

Figure 50. UML diagram of the Water Body Model.

The ADE data types provided for the Water Body module are illustrated in Figure 51.

Figure 51. ADE classes of the CityGML Water Body module.

The Code Lists provided for the Water Body module are illustrated in Figure 52.

Figure 52. Codelists from the CityGML Water Body module.

Table 53 lists the surfaces that are allowed as thematic surface boundaries of the space classes
defined in the WaterBody module:

Table 53. WaterBody space classes and their allowed thematic surface boundaries

106

Space class Allowed space boundaries

WaterBody • WaterBody::AbstractWaterBoundarySurface and all subclasses, i.e.
 WaterBody::WaterGroundSurface,
 WaterBody::WaterSurface

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

8.14.1. Requirements

The following requirement defines the rules governing implementation of the CityGML WaterBody
Module as an Implementation Specification.

Requirement 33 /req/waterbody/classes

For each UML class defined or referenced in the Waterbody Package:

A The Implementation Specification SHALL contain an element
which represents the same concept as that defined for the UML
class.

B The Implementation Specification SHALL represent associations
with the same source, target, direction, roles, and multiplicities as
those of the UML class.

C The implementation Specification SHALL represent the attributes
of the UML class including the name, definition, type, and
multiplicity.

D The implementation Specification SHALL represent the attributes
of all superclasses of the UML class including the name,
definition, type, and multiplicity.

E The implementation Specification SHALL represent the
associations of all superclasses of the UML class including the
source, target, direction, roles, and multiplicity.

F The Implementation Specification SHALL specify how an
implementation observes all constraints the Conceptual Model
imposes on the UML class.

The implementation of this Module is further constrained by the following spatial boundary
requirement:

Requirement 34 /req/waterbody/boundaries

Table 53 lists the surfaces that are allowed as thematic surface boundaries of the space
classes defined in the Waterbody module. An Implementation Specification SHALL only
support the boundaries described in Table 53

107

The use of extension capabilities by Waterbody elements is constrained by the following
requirement:

Requirement 35 /req/waterbody/ade/use

ADE element and property extensions SHALL NOT be used unless conformance with the
ADE Requirements Class can be demonstrated.

8.14.2. Class Definitions

Table 54. Classes used in WaterBody

Class Description

WaterBody
«TopLevelFeatureType»

A WaterBody represents significant and permanent or semi-permanent
accumulations of surface water, usually covering a part of the Earth.

AbstractWaterBoundar
ySurface
«FeatureType»

AbstractWaterBoundarySurface is the abstract superclass for all kinds of
thematic surfaces bounding a water body.

WaterGroundSurface
«FeatureType»

A WaterGroundSurface represents the exterior boundary surface of the
submerged bottom of a water body.

WaterSurface
«FeatureType»

A WaterSurface represents the upper exterior interface between a water
body and the atmosphere.

Table 55. Data Types used in WaterBody

Name Description

ADEOfAbstractWaterBo
undarySurface
«DataType»

ADEOfAbstractWaterBoundarySurface acts as a hook to define properties
within an ADE that are to be added to AbstractWaterBoundarySurface.

ADEOfWaterBody
«DataType»

ADEOfWaterBody acts as a hook to define properties within an ADE that
are to be added to a WaterBody.

ADEOfWaterGroundSu
rface
«DataType»

ADEOfWaterGroundSurface acts as a hook to define properties within an
ADE that are to be added to a WaterGroundSurface.

ADEOfWaterSurface
«DataType»

ADEOfWaterSurface acts as a hook to define properties within an ADE
that are to be added to a WaterSurface.

Table 56. CodeList Classes used in WaterBody

Name Description

WaterBodyClassValue
«CodeList»

WaterBodyClassValue is a code list used to further classify a WaterBody.

WaterBodyFunctionVal
ue
«CodeList»

WaterBodyFunctionValue is a code list that enumerates the different
purposes of a WaterBody.

108

WaterBodyUsageValue
«CodeList»

WaterBodyUsageValue is a code list that enumerates the different uses of
a WaterBody.

WaterLevelValue
«CodeList»

WaterLevelValue is a code list that enumerates the different levels of a
water surface.

8.14.3. Additional Information

Additional information about the WaterBody Module can be found in the OGC CityGML 3.0 Users
Guide

8.15. Construction

Requirements Class

http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-construction

Target type Implementation Specification

Dependency /req/req-class-core

Dependency /req/req-class-generics

The Construction module defines concepts that are common to all forms of constructions.
Constructions are objects that are manufactured by humans from construction materials, are
connected to earth, and are intended to be permanent. The Construction module focuses on as-built
representations of constructions and integrates all concepts that are similar over different types of
constructions, in particular buildings, bridges, and tunnels. In addition, for representing man-made
structures that are neither buildings, nor bridges, nor tunnels so-called other constructions (e.g.
large chimneys or city walls) can be defined.

Furniture, installations, and constructive elements are further concepts that are defined in the
Construction module. Installations are permanent parts of a construction that strongly affect the
outer or inner appearance of the construction and that cannot be moved (e.g. balconies, chimneys,
or stairs), whereas furniture represent moveable objects of a construction (e.g. tables and chairs).
Constructive elements allow for decomposing a construction into volumetric components, such as
walls, beams, and slabs. Constructions and constructive elements can be bounded by different types
of surfaces. In this way, the outer structure of constructions and constructive elements can be
differentiated semantically into wall surfaces, roof surfaces, ground surfaces, outer floor surfaces,
and outer ceiling surfaces, whereas the visible surface of interior spaces can be structured into
interior wall surfaces, floor surfaces, and ceiling surfaces. Furthermore, the openings of
constructions, i.e. windows and doors, can be represented as so-called filling elements including
their corresponding filling surfaces.

The UML diagram of the Construction module is depicted in Figure 53. The Construction module
defines concepts that are inherited and, where necessary, are specialized by the modules Building,
Bridge, and Tunnel (cf. Section 8.17, Section 8.16, and Section 8.18). A detailed discussion of the
Requirements Class Construction can be found in the CityGML 3.0 Users Guide.

109

http://docs.opengeospatial.org/DRAFTS/20-066.html
http://docs.opengeospatial.org/DRAFTS/20-066.html
http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-construction
http://docs.opengeospatial.org/DRAFTS/20-066.html

Figure 53. UML diagram of the Construction Model.

The ADE data types provided for the Construction module are illustrated in Figure 54.

110

Figure 54. ADE classes of the CityGML Bridge module.

The Code Lists provided for the Construction module are illustrated in Figure 55.

Figure 55. Codelists from the CityGML Bridge module.

Table 57 lists the surfaces that are allowed as thematic surface boundaries of the space classes
defined in the Construction module:

Table 57. Construction space classes and their allowed thematic surface boundaries

Space class Allowed space boundaries

111

AbstractConstruction • Construction::AbstractConstructionSurface and all subclasses, i.e.
 Construction::GroundSurface,
 Construction::RoofSurface,
 Construction::CeilingSurface,
 Construction::OuterCeilingSurface,
 Construction::FloorSurface,
 Construction::OuterFloorSurface,
 Construction::WallSurface,
 Construction::InteriorWallSurface

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

AbstractConstructiveEl
ement

• Construction::AbstractConstructionSurface and all subclasses, i.e.
 Construction::GroundSurface,
 Construction::RoofSurface,
 Construction::CeilingSurface,
 Construction::OuterCeilingSurface,
 Construction::FloorSurface,
 Construction::OuterFloorSurface,
 Construction::WallSurface,
 Construction::InteriorWallSurface

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

AbstractFillingElement No boundaries allowed

AbstractFurniture No boundaries allowed

AbstractInstallation • Construction::AbstractConstructionSurface and all subclasses, i.e.
 Construction::GroundSurface,
 Construction::RoofSurface,
 Construction::CeilingSurface,
 Construction::OuterCeilingSurface,
 Construction::FloorSurface,
 Construction::OuterFloorSurface,
 Construction::WallSurface,
 Construction::InteriorWallSurface

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

112

Door • Construction::DoorSurface

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

OtherConstruction • Construction::AbstractConstructionSurface and all subclasses, i.e.
 Construction::GroundSurface,
 Construction::RoofSurface,
 Construction::CeilingSurface,
 Construction::OuterCeilingSurface,
 Construction::FloorSurface,
 Construction::OuterFloorSurface,
 Construction::WallSurface,
 Construction::InteriorWallSurface

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

Window • Construction::WindowSurface

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

8.15.1. Requirements

The following requirement defines the rules governing implementation of the CityGML
Construction Module as an Implementation Specification.

Requirement 36 /req/construction/classes

For each UML class defined or referenced in the Construction Package:

A The Implementation Specification SHALL contain an element
which represents the same concept as that defined for the UML
class.

B The Implementation Specification SHALL represent associations
with the same source, target, direction, roles, and multiplicities as
those of the UML class.

C The implementation Specification SHALL represent the attributes
of the UML class including the name, definition, type, and
multiplicity.

113

D The implementation Specification SHALL represent the attributes
of all superclasses of the UML class including the name,
definition, type, and multiplicity.

E The implementation Specification SHALL represent the
associations of all superclasses of the UML class including the
source, target, direction, roles, and multiplicity.

F The Implementation Specification SHALL specify how an
implementation observes all constraints the Conceptual Model
imposes on the UML class.

The implementation of this Module is further constrained by the following spatial boundary
requirement:

Requirement 37 /req/construction/boundaries

Table 57 lists the surfaces that are allowed as thematic surface boundaries of the space
classes defined in the Construction module. An Implementation Specification SHALL
only support the boundaries described in Table 57

The use of extension capabilities by Construction elements is constrained by the following
requirement:

Requirement 38 /req/construction/ade/use

ADE element and property extensions SHALL NOT be used unless conformance with the
ADE Requirements Class can be demonstrated.

8.15.2. Class Definitions

Table 58. Classes used in Construction

Class Description

OtherConstruction
«TopLevelFeatureType»

An OtherConstruction is a construction that is not covered by any of the
other subclasses of AbstractConstruction.

AbstractConstruction
«FeatureType»

AbstractConstruction is the abstract superclass for objects that are
manufactured by humans from construction materials, are connected to
earth, and are intended to be permanent. A connection with the ground
also exists when the construction rests by its own weight on the ground
or is moveable limited on stationary rails or if the construction is
intended to be used mainly stationary.

AbstractConstructionSu
rface
«FeatureType»

AbstractConstructionSurface is the abstract superclass for different kinds
of surfaces that bound a construction.

AbstractConstructiveEl
ement
«FeatureType»

AbstractConstructiveElement is the abstract superclass for the
representation of volumetric elements of a construction. Examples are
walls, beams, slabs.

114

AbstractFillingElement
«FeatureType»

AbstractFillingElement is the abstract superclass for different kinds of
elements that fill the openings of a construction.

AbstractFillingSurface
«FeatureType»

AbstractFillingSurface is the abstract superclass for different kinds of
surfaces that seal openings filled by filling elements.

AbstractFurniture
«FeatureType»

AbstractFurniture is the abstract superclass for the representation of
furniture objects of a construction.

AbstractInstallation
«FeatureType»

AbstractInstallation is the abstract superclass for the representation of
installation objects of a construction.

CeilingSurface
«FeatureType»

A CeilingSurface is a surface that represents the interior ceiling of a
construction. An example is the ceiling of a room.

Door
«FeatureType»

A Door is a construction for closing an opening intended primarily for
access or egress or both. [cf. ISO 6707-1]

DoorSurface
«FeatureType»

A DoorSurface is either a boundary surface of a Door feature or a surface
that seals an opening filled by a door.

FloorSurface
«FeatureType»

A FloorSurface is surface that represents the interior floor of a
construction. An example is the floor of a room.

GroundSurface
«FeatureType»

A GroundSurface is a surface that represents the ground plate of a
construction. The polygon defining the ground plate is congruent with the
footprint of the construction.

InteriorWallSurface
«FeatureType»

An InteriorWallSurface is a surface that is visible from inside a
construction. An example is the wall of a room.

OuterCeilingSurface
«FeatureType»

An OuterCeilingSurface is a surface that belongs to the outer building
shell with the orientation pointing downwards. An example is the ceiling
of a loggia.

OuterFloorSurface
«FeatureType»

An OuterFloorSurface is a surface that belongs to the outer construction
shell with the orientation pointing upwards. An example is the floor of a
loggia.

RoofSurface
«FeatureType»

A RoofSurface is a surface that delimits major roof parts of a
construction.

WallSurface
«FeatureType»

A WallSurface is a surface that is part of the building facade visible from
the outside.

Window
«FeatureType»

A Window is a construction for closing an opening in a wall or roof,
primarily intended to admit light and/or provide ventilation. [cf. ISO
6707-1]

WindowSurface
«FeatureType»

A WindowSurface is either a boundary surface of a Window feature or a
surface that seals an opening filled by a window.

Table 59. Data Types used in Construction

Name Description

115

ADEOfAbstractConstruc
tion
«DataType»

ADEOfAbstractConstruction acts as a hook to define properties within an
ADE that are to be added to AbstractConstruction.

ADEOfAbstractConstruc
tionSurface
«DataType»

ADEOfAbstractConstructionSurface acts as a hook to define properties
within an ADE that are to be added to AbstractConstructionSurface.

ADEOfAbstractConstruc
tiveElement
«DataType»

ADEOfAbstractConstructiveElement acts as a hook to define properties
within an ADE that are to be added to AbstractConstructiveElement.

ADEOfAbstractFillingEl
ement
«DataType»

ADEOfAbstractFillingElement acts as a hook to define properties within
an ADE that are to be added to AbstractFillingElement.

ADEOfAbstractFillingSu
rface
«DataType»

ADEOfAbstractFillingSurface acts as a hook to define properties within an
ADE that are to be added to AbstractFillingSurface.

ADEOfAbstractFurnitur
e
«DataType»

ADEOfAbstractFurniture acts as a hook to define properties within an
ADE that are to be added to AbstractFurniture.

ADEOfAbstractInstallati
on
«DataType»

ADEOfAbstractInstallation acts as a hook to define properties within an
ADE that are to be added to AbstractInstallation.

ADEOfCeilingSurface
«DataType»

ADEOfCeilingSurface acts as a hook to define properties within an ADE
that are to be added to a CeilingSurface.

ADEOfDoor
«DataType»

ADEOfDoor acts as a hook to define properties within an ADE that are to
be added to a Door.

ADEOfDoorSurface
«DataType»

ADEOfDoorSurface acts as a hook to define properties within an ADE that
are to be added to a DoorSurface.

ADEOfFloorSurface
«DataType»

ADEOfFloorSurface acts as a hook to define properties within an ADE that
are to be added to a FloorSurface.

ADEOfGroundSurface
«DataType»

ADEOfGroundSurface acts as a hook to define properties within an ADE
that are to be added to a GroundSurface.

ADEOfInteriorWallSurf
ace
«DataType»

ADEOfInteriorWallSurface acts as a hook to define properties within an
ADE that are to be added to an InteriorWallSurface.

ADEOfOtherConstructio
n
«DataType»

ADEOfOtherConstruction acts as a hook to define properties within an
ADE that are to be added to an OtherConstruction.

ADEOfOuterCeilingSurf
ace
«DataType»

ADEOfOuterCeilingSurface acts as a hook to define properties within an
ADE that are to be added to an OuterCeilingSurface.

116

ADEOfOuterFloorSurfa
ce
«DataType»

ADEOfOuterFloorSurface acts as a hook to define properties within an
ADE that are to be added to an OuterFloorSurface.

ADEOfRoofSurface
«DataType»

ADEOfRoofSurface acts as a hook to define properties within an ADE that
are to be added to a RoofSurface.

ADEOfWallSurface
«DataType»

ADEOfWallSurface acts as a hook to define properties within an ADE that
are to be added to a WallSurface.

ADEOfWindow
«DataType»

ADEOfWindow acts as a hook to define properties within an ADE that are
to be added to a Window.

ADEOfWindowSurface
«DataType»

ADEOfWindowSurface acts as a hook to define properties within an ADE
that are to be added to a WindowSurface.

ConstructionEvent
«DataType»

A ConstructionEvent is a data type used to describe a specific event that is
associated with a construction. Examples are the issuing of a building
permit or the renovation of a building.

Elevation
«DataType»

Elevation is a data type that includes the elevation value itself and
information on how this elevation was measured. [cf. INSPIRE]

Height
«DataType»

Height represents a vertical distance (measured or estimated) between a
low reference and a high reference. [cf. INSPIRE]

Table 60. Enumerated Classes used in Construction

Name Description

ConditionOfConstructio
nValue
«Enumeration»

ConditionOfConstructionValue enumerates different conditions of a
construction. [cf. INSPIRE]

HeightStatusValue
«Enumeration»

HeightStatusValue enumerates the different methods used to capture a
height. [cf. INSPIRE]

RelationToConstruction
«Enumeration»

RelationToConstruction is an enumeration used to describe whether an
installation is positioned inside and/or outside of a construction.

Table 61. CodeList Classes used in Construction

Name Description

DoorClassValue
«CodeList»

DoorClassValue is a code list used to further classify a Door.

DoorFunctionValue
«CodeList»

DoorFunctionValue is a code list that enumerates the different purposes
of a Door.

DoorUsageValue
«CodeList»

DoorUsageValue is a code list that enumerates the different uses of a
Door.

ElevationReferenceVal
ue
«CodeList»

ElevationReferenceValue is a code list that enumerates the different
elevation reference levels used to measure construction heights.

117

EventValue
«CodeList»

EventValue is a code list that enumerates the different events of a
construction.

OtherConstructionClass
Value
«CodeList»

OtherConstructionClassValue is a code list used to further classify an
OtherConstruction.

OtherConstructionFunc
tionValue
«CodeList»

OtherConstructionFunctionValue is a code list that enumerates the
different purposes of an OtherConstruction.

OtherConstructionUsag
eValue
«CodeList»

OtherConstructionUsageValue is a code list that enumerates the different
uses of an OtherConstruction.

WindowClassValue
«CodeList»

WindowClassValue is a code list used to further classify a Window.

WindowFunctionValue
«CodeList»

WindowFunctionValue is a code list that enumerates the different
purposes of a Window.

WindowUsageValue
«CodeList»

WindowUsageValue is a code list that enumerates the different uses of a
Window.

8.15.3. Additional Information

Additional information about the Construction Module can be found in the OGC CityGML 3.0 Users
Guide

8.16. Bridge

Requirements Class

http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-bridge

Target type Implementation Specification

Dependency /req/req-class-core

Dependency /req/req-class-construction

The Bridge module provides the representation of thematic and spatial aspects of bridges. Bridges
are movable or unmovable structures that span intervening natural or built elements. In this way,
bridges allow the passage of pedestrians, animals, vehicles, and service(s) above obstacles or
between two points at a height above ground. Bridges are represented in the UML model by the top-
level feature type Bridge, which is the main class of the Bridge module. Bridges can physically or
functionally be subdivided into bridge parts. In addition, bridges can be decomposed into structural
elements, such as pylons, anchorages, cables, slabs, and beams.

The free space inside bridges is represented by rooms, which allows a virtual accessibility of
bridges. Bridges can contain installations and furniture. Installations are permanent parts of a
bridge that strongly affect the outer or inner appearance of the bridge and that cannot be moved.
Examples are stairways, signals, railings, and lamps. Furniture, in contrast, represent moveable

118

http://docs.opengeospatial.org/DRAFTS/20-066.html
http://docs.opengeospatial.org/DRAFTS/20-066.html
http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-bridge

objects of a bridge, like signs, art works, and benches. Bridges can be bounded by different types of
surfaces. In this way, the outer structure of bridges can be differentiated semantically into wall
surfaces, roof surfaces, ground surfaces, outer floor surfaces, and outer ceiling surfaces, whereas
the visible surface of rooms can be structured into interior wall surfaces, floor surfaces, and ceiling
surfaces. Furthermore, the openings of bridges, i.e. windows and doors, can be represented
including their corresponding surfaces.

The UML diagram of the Bridge module is depicted in Figure 56. The Bridge module inherits
concepts from the Construction module (cf. Section 8.15). The Construction module defines objects
that are common to all types of construction, such as the different surface types and the openings. A
detailed discussion of Requirements Class Bridge can be found in the CityGML 3.0 Users Guide.

Figure 56. UML diagram of the Bridge Model.

The ADE data types provided for the Bridge module are illustrated in Figure 57.

119

http://docs.opengeospatial.org/DRAFTS/20-066.html

Figure 57. ADE classes of the CityGML Bridge module.

The Code Lists provided for the Bridge module are illustrated in Figure 58.

Figure 58. Codelists from the CityGML Bridge module.

Table 62 lists the surfaces that are allowed as thematic surface boundaries of the space classes
defined in the Bridge module:

Table 62. Bridge space classes and their allowed thematic surface boundaries

Space class Allowed space boundaries

120

AbstractBridge • Construction::AbstractConstructionSurface and all subclasses, i.e.
 Construction::GroundSurface,
 Construction::RoofSurface,
 Construction::CeilingSurface,
 Construction::OuterCeilingSurface,
 Construction::FloorSurface,
 Construction::OuterFloorSurface,
 Construction::WallSurface,
 Construction::InteriorWallSurface

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

Bridge • Construction::AbstractConstructionSurface and all subclasses, i.e.
 Construction::GroundSurface,
 Construction::RoofSurface,
 Construction::CeilingSurface,
 Construction::OuterCeilingSurface,
 Construction::FloorSurface,
 Construction::OuterFloorSurface,
 Construction::WallSurface,
 Construction::InteriorWallSurface

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

BridgeConstructiveEle
ment

• Construction::AbstractConstructionSurface and all subclasses, i.e.
 Construction::GroundSurface,
 Construction::RoofSurface,
 Construction::CeilingSurface,
 Construction::OuterCeilingSurface,
 Construction::FloorSurface,
 Construction::OuterFloorSurface,
 Construction::WallSurface,
 Construction::InteriorWallSurface

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

BridgeFurniture No boundaries allowed

121

BridgeInstallation • Construction::AbstractConstructionSurface and all subclasses, i.e.
 Construction::GroundSurface,
 Construction::RoofSurface,
 Construction::CeilingSurface,
 Construction::OuterCeilingSurface,
 Construction::FloorSurface,
 Construction::OuterFloorSurface,
 Construction::WallSurface,
 Construction::InteriorWallSurface

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

BridgePart • Construction::AbstractConstructionSurface and all subclasses, i.e.
 Construction::GroundSurface,
 Construction::RoofSurface,
 Construction::CeilingSurface,
 Construction::OuterCeilingSurface,
 Construction::FloorSurface,
 Construction::OuterFloorSurface,
 Construction::WallSurface,
 Construction::InteriorWallSurface

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

BridgeRoom • Construction::AbstractConstructionSurface and all subclasses, i.e.
 Construction::GroundSurface,
 Construction::RoofSurface,
 Construction::CeilingSurface,
 Construction::OuterCeilingSurface,
 Construction::FloorSurface,
 Construction::OuterFloorSurface,
 Construction::WallSurface,
 Construction::InteriorWallSurface

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

8.16.1. Requirements

The following requirement defines the rules governing implementation of the CityGML Bridge
Module as an Implementation Specification.

122

Requirement 39 /req/bridge/classes

For each UML class defined or referenced in the Bridge Package:

A The Implementation Specification SHALL contain an element
which represents the same concept as that defined for the UML
class.

B The Implementation Specification SHALL represent associations
with the same source, target, direction, roles, and multiplicities as
those of the UML class.

C The implementation Specification SHALL represent the attributes
of the UML class including the name, definition, type, and
multiplicity.

D The implementation Specification SHALL represent the attributes
of all superclasses of the UML class including the name,
definition, type, and multiplicity.

E The implementation Specification SHALL represent the
associations of all superclasses of the UML class including the
source, target, direction, roles, and multiplicity.

F The Implementation Specification SHALL specify how an
implementation observes all constraints the Conceptual Model
imposes on the UML class.

The implementation of this Module is further constrained by the following spatial boundary
requirement:

Requirement 40 /req/bridge/boundaries

Table 62 lists the surfaces that are allowed as thematic surface boundaries of the space
classes defined in the Bridge module. An Implementation Specification SHALL only
support the boundaries described in Table 62

The use of extension capabilities by Bridge elements is constrained by the following requirement:

Requirement 41 /req/bridge/ade/use

ADE element and property extensions SHALL NOT be used unless conformance with the
ADE Requirements Class can be demonstrated.

8.16.2. Class Definitions

Table 63. Classes used in Bridge

Class Description

Bridge
«TopLevelFeatureType»

A Bridge represents a structure that affords the passage of pedestrians,
animals, vehicles, and service(s) above obstacles or between two points at
a height above ground. [cf. ISO 6707-1]

123

AbstractBridge
«FeatureType»

AbstractBridge is an abstract superclass representing the common
attributes and associations of the classes Bridge and BridgePart.

BridgeConstructiveEle
ment
«FeatureType»

A BridgeConstructiveElement is an element of a bridge which is essential
from a structural point of view. Examples are pylons, anchorages, slabs,
beams.

BridgeFurniture
«FeatureType»

A BridgeFurniture is an equipment for occupant use, usually not fixed to
the bridge. [cf. ISO 6707-1]

BridgeInstallation
«FeatureType»

A BridgeInstallation is a permanent part of a Bridge (inside and/or
outside) which does not have the significance of a BridgePart. In contrast
to BridgeConstructiveElements, a BridgeInstallation is not essential from
a structural point of view. Examples are stairs, antennas or railways.

BridgePart
«FeatureType»

A BridgePart is a physical or functional subdivision of a Bridge. It would
be considered a Bridge, if it were not part of a collection of other
BridgeParts.

BridgeRoom
«FeatureType»

A BridgeRoom is a space within a Bridge or BridgePart intended for
human occupancy (e.g. a place of work or recreation) and/or containment
(storage) of animals or things. A BridgeRoom is bounded physically
and/or virtually (e.g. by ClosureSurfaces or GenericSurfaces).

Table 64. Data Types used in Bridge

Name Description

ADEOfAbstractBridge
«DataType»

ADEOfAbstractBridge acts as a hook to define properties within an ADE
that are to be added to AbstractBridge.

ADEOfBridge
«DataType»

ADEOfBridge acts as a hook to define properties within an ADE that are to
be added to a Bridge.

ADEOfBridgeConstructi
veElement
«DataType»

ADEOfBridgeConstructiveElement acts as a hook to define properties
within an ADE that are to be added to a BridgeConstructiveElement.

ADEOfBridgeFurniture
«DataType»

ADEOfBridgeFurniture acts as a hook to define properties within an ADE
that are to be added to a BridgeFurniture.

ADEOfBridgeInstallatio
n
«DataType»

ADEOfBridgeInstallation acts as a hook to define properties within an
ADE that are to be added to a BridgeInstallation.

ADEOfBridgePart
«DataType»

ADEOfBridgePart acts as a hook to define properties within an ADE that
are to be added to a BridgePart.

ADEOfBridgeRoom
«DataType»

ADEOfBridgeRoom acts as a hook to define properties within an ADE that
are to be added to a BridgeRoom.

Table 65. CodeList Classes used in Bridge

Name Description

BridgeClassValue
«CodeList»

BridgeClassValue is a code list used to further classify a Bridge.

124

BridgeConstructiveEle
mentClassValue
«CodeList»

BridgeConstructiveElementClassValue is a code list used to further
classify a BridgeConstructiveElement.

BridgeConstructiveEle
mentFunctionValue
«CodeList»

BridgeConstructiveElementFunctionValue is a code list that enumerates
the different purposes of a BridgeConstructiveElement.

BridgeConstructiveEle
mentUsageValue
«CodeList»

BridgeConstructiveElementUsageValue is a code list that enumerates the
different uses of a BridgeConstructiveElement.

BridgeFunctionValue
«CodeList»

BridgeFunctionValue is a code list that enumerates the different purposes
of a Bridge.

BridgeFurnitureClassV
alue
«CodeList»

BridgeFurnitureClassValue is a code list used to further classify a
BridgeFurniture.

BridgeFurnitureFunctio
nValue
«CodeList»

BridgeFurnitureFunctionValue is a code list that enumerates the different
purposes of a BridgeFurniture.

BridgeFurnitureUsageV
alue
«CodeList»

BridgeFurnitureUsageValue is a code list that enumerates the different
uses of a BridgeFurniture.

BridgeInstallationClass
Value
«CodeList»

BridgeInstallationClassValue is a code list used to further classify a
BridgeInstallation.

BridgeInstallationFunct
ionValue
«CodeList»

BridgeInstallationFunctionValue is a code list that enumerates the
different purposes of a BridgeInstallation.

BridgeInstallationUsage
Value
«CodeList»

BridgeInstallationUsageValue is a code list that enumerates the different
uses of a BridgeInstallation.

BridgeRoomClassValue
«CodeList»

BridgeRoomClassValue is a code list used to further classify a
BridgeRoom.

BridgeRoomFunctionVa
lue
«CodeList»

BridgeRoomFunctionValue is a code list that enumerates the different
purposes of a BridgeRoom.

BridgeRoomUsageValue
«CodeList»

BridgeRoomUsageValue is a code list that enumerates the different uses
of a BridgeRoom.

BridgeUsageValue
«CodeList»

BridgeUsageValue is a code list that enumerates the different uses of a
Bridge.

8.16.3. Additional Information

Additional information about the Bridge Module can be found in the OGC CityGML 3.0 Users Guide

125

http://docs.opengeospatial.org/DRAFTS/20-066.html

8.17. Building

Requirements Class

http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-building

Target type Implementation Specification

Dependency /req/req-class-core

Dependency /req/req-class-construction

The Building module provides the representation of thematic and spatial aspects of buildings.
Buildings are free-standing, self-supporting constructions that are roofed and usually walled, and
that can be entered by humans and are normally designed to stand permanently in one place.
Buildings are intended for human occupancy (e.g. a place of work or recreation), habitation and/or
shelter of humans, animals or things. Buildings are represented in the UML model by the top-level
feature type Building, which is the main class of the Building module. Buildings can physically or
functionally be subdivided into building parts, and logically into storeys and building units (e.g.
apartments). In addition, buildings can be decomposed into structural elements, such as walls,
slabs, staircases, and beams.

The interior of buildings is represented by rooms. This allows a virtual accessibility of buildings
such as for visitor information in a museum (“Location Based Services“), the examination of
accommodation standards or the presentation of daylight illumination of a building.

Buildings can contain installations and furniture. Installations are permanent parts of a building
that strongly affect the outer or inner appearance of the building and that cannot be moved.
Examples are balconies, chimneys, dormers or stairs. In contrast, furniture, represents moveable
objects inside a building, like tables and chairs.

Buildings can be bounded by different types of surfaces. In this way, the outer façade of buildings
can be differentiated semantically into wall surfaces, roof surfaces, ground surfaces, outer floor
surfaces, and outer ceiling surfaces, whereas the visible surface of rooms can be structured into
interior wall surfaces, floor surfaces, and ceiling surfaces. Furthermore, the openings of buildings,
i.e. windows and doors, can be represented including their corresponding surfaces.

The UML diagram of the building module is depicted in Figure 59. The Building module inherits
concepts from the Construction module (cf. Section 8.15). The Construction module defines objects
that are common to all types of construction, such as the different surface types and the openings. A
detailed discussion of the Requirements Class Building can be found in the CityGML 3.0 Users
Guide.

126

http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-building
http://docs.opengeospatial.org/DRAFTS/20-066.html
http://docs.opengeospatial.org/DRAFTS/20-066.html

Figure 59. UML diagram of CityGML’s building model.

The ADE data types provided for the Building module are illustrated in Figure 60.

Figure 60. ADE classes of the CityGML Building module.

The Code Lists provided for the Building module are illustrated in Figure 61.

127

Figure 61. Codelists from the CityGML Building module.

Table 66 lists the surfaces that are allowed as thematic surface boundaries of the space classes
defined in the Building module:

Table 66. Building space classes and their allowed thematic surface boundaries

Space class Allowed space boundaries

AbstractBuilding • Construction::AbstractConstructionSurface and all subclasses, i.e.
 Construction::GroundSurface,
 Construction::RoofSurface,
 Construction::CeilingSurface,
 Construction::OuterCeilingSurface,
 Construction::FloorSurface,
 Construction::OuterFloorSurface,
 Construction::WallSurface,
 Construction::InteriorWallSurface

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

AbstractBuildingSubdiv
ision

No boundaries allowed

128

Building • Construction::AbstractConstructionSurface and all subclasses, i.e.
 Construction::GroundSurface,
 Construction::RoofSurface,
 Construction::CeilingSurface,
 Construction::OuterCeilingSurface,
 Construction::FloorSurface,
 Construction::OuterFloorSurface,
 Construction::WallSurface,
 Construction::InteriorWallSurface

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

BuildingConstructiveEl
ement

• Construction::AbstractConstructionSurface and all subclasses, i.e.
 Construction::GroundSurface,
 Construction::RoofSurface,
 Construction::CeilingSurface,
 Construction::OuterCeilingSurface,
 Construction::FloorSurface,
 Construction::OuterFloorSurface,
 Construction::WallSurface,
 Construction::InteriorWallSurface

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

BuildingFurniture No boundaries allowed

BuildingInstallation • Construction::AbstractConstructionSurface and all subclasses, i.e.
 Construction::GroundSurface,
 Construction::RoofSurface,
 Construction::CeilingSurface,
 Construction::OuterCeilingSurface,
 Construction::FloorSurface,
 Construction::OuterFloorSurface,
 Construction::WallSurface,
 Construction::InteriorWallSurface

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

129

BuildingPart • Construction::AbstractConstructionSurface and all subclasses, i.e.
 Construction::GroundSurface,
 Construction::RoofSurface,
 Construction::CeilingSurface,
 Construction::OuterCeilingSurface,
 Construction::FloorSurface,
 Construction::OuterFloorSurface,
 Construction::WallSurface,
 Construction::InteriorWallSurface

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

BuildingRoom • Construction::AbstractConstructionSurface and all subclasses, i.e.
 Construction::GroundSurface,
 Construction::RoofSurface,
 Construction::CeilingSurface,
 Construction::OuterCeilingSurface,
 Construction::FloorSurface,
 Construction::OuterFloorSurface,
 Construction::WallSurface,
 Construction::InteriorWallSurface

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

BuildingUnit • Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

Storey • Construction::AbstractConstructionSurface and all subclasses, i.e.
 Construction::GroundSurface,
 Construction::RoofSurface,
 Construction::CeilingSurface,
 Construction::OuterCeilingSurface,
 Construction::FloorSurface,
 Construction::OuterFloorSurface,
 Construction::WallSurface,
 Construction::InteriorWallSurface

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

130

8.17.1. Requirements

The following requirement defines the rules governing implementation of the CityGML Building
Module as an Implementation Specification.

Requirement 42 /req/building/classes

For each UML class defined or referenced in the Building Package:

A The Implementation Specification SHALL contain an element
which represents the same concept as that defined for the UML
class.

B The Implementation Specification SHALL represent associations
with the same source, target, direction, roles, and multiplicities as
those of the UML class.

C The implementation Specification SHALL represent the attributes
of the UML class including the name, definition, type, and
multiplicity.

D The implementation Specification SHALL represent the attributes
of all superclasses of the UML class including the name,
definition, type, and multiplicity.

E The implementation Specification SHALL represent the
associations of all superclasses of the UML class including the
source, target, direction, roles, and multiplicity.

F The Implementation Specification SHALL specify how an
implementation observes all constraints the Conceptual Model
imposes on the UML class.

The implementation of this Module is further constrained by the following spatial boundary
requirement:

Requirement 43 /req/building/boundaries

Table 66 lists the surfaces that are allowed as thematic surface boundaries of the space
classes defined in the Building module. An Implementation Specification SHALL only
support the boundaries described in Table 66

The use of extension capabilities by Building elements is constrained by the following requirement:

Requirement 44 /req/building/ade/use

ADE element and property extensions SHALL NOT be used unless conformance with the
ADE Requirements Class can be demonstrated.

8.17.2. Class Definitions

Table 67. Classes used in Building

Class Description

131

Building
«TopLevelFeatureType»

A Building is a free-standing, self-supporting construction that is roofed,
usually walled, and can be entered by humans and is normally designed
to stand permanently in one place. It is intended for human occupancy
(e.g. a place of work or recreation), habitation and/or shelter of humans,
animals or things.

AbstractBuilding
«FeatureType»

AbstractBuilding is an abstract superclass representing the common
attributes and associations of the classes Building and BuildingPart.

AbstractBuildingSubdiv
ision
«FeatureType»

AbstractBuildingSubdivision is the abstract superclass for different kinds
of logical building subdivisions.

BuildingConstructiveEl
ement
«FeatureType»

A BuildingConstructiveElement is an element of a Building which is
essential from a structural point of view. Examples are walls, slabs,
staircases, beams.

BuildingFurniture
«FeatureType»

A BuildingFurniture is an equipment for occupant use, usually not fixed
to the building. [cf. ISO 6707-1]

BuildingInstallation
«FeatureType»

A BuildingInstallation is a permanent part of a Building (inside and/or
outside) which has not the significance of a BuildingPart. Examples are
stairs, antennas, balconies or small roofs.

BuildingPart
«FeatureType»

A BuildingPart is a physical or functional subdivision of a Building. It
would be considered a Building, if it were not part of a collection of other
BuildingParts.

BuildingRoom
«FeatureType»

A BuildingRoom is a space within a Building or BuildingPart intended for
human occupancy (e.g. a place of work or recreation) and/or containment
of animals or things. A BuildingRoom is bounded physically and/or
virtually (e.g. by ClosureSurfaces or GenericSurfaces).

BuildingUnit
«FeatureType»

A BuildingUnit is a logical subdivision of a Building. BuildingUnits are
formed according to some homogeneous property like function,
ownership, management, or accessability. They may be separately sold,
rented out, inherited, managed, etc.

Storey
«FeatureType»

A Storey is typically a horizontal section of a Building. Storeys are not
always defined according to the building structure, but can also be
defined according to logical considerations.

Table 68. Data Types used in Building

Name Description

ADEOfAbstractBuilding
«DataType»

ADEOfAbstractBuilding acts as a hook to define properties within an ADE
that are to be added to AbstractBuilding.

ADEOfAbstractBuilding
Subdivision
«DataType»

ADEOfAbstractBuildingSubdivision acts as a hook to define properties
within an ADE that are to be added to AbstractBuildingSubdivision.

ADEOfBuilding
«DataType»

ADEOfBuilding acts as a hook to define properties within an ADE that are
to be added to a Building.

132

ADEOfBuildingConstru
ctiveElement
«DataType»

ADEOfBuildingConstructiveElement acts as a hook to define properties
within an ADE that are to be added to a BuildingConstructiveElement.

ADEOfBuildingFurnitur
e
«DataType»

ADEOfBuildingFurniture acts as a hook to define properties within an
ADE that are to be added to a BuildingFurniture.

ADEOfBuildingInstallat
ion
«DataType»

ADEOfBuildingInstallation acts as a hook to define properties within an
ADE that are to be added to a BuildingInstallation.

ADEOfBuildingPart
«DataType»

ADEOfBuildingPart acts as a hook to define properties within an ADE that
are to be added to a BuildingPart.

ADEOfBuildingRoom
«DataType»

ADEOfBuildingRoom acts as a hook to define properties within an ADE
that are to be added to a BuildingRoom.

ADEOfBuildingUnit
«DataType»

ADEOfBuildingUnit acts as a hook to define properties within an ADE that
are to be added to a BuildingUnit.

ADEOfStorey
«DataType»

ADEOfStorey acts as a hook to define properties within an ADE that are to
be added to a Storey.

RoomHeight
«DataType»

The RoomHeight represents a vertical distance (measured or estimated)
between a low reference and a high reference. [cf. INSPIRE]

Table 69. CodeList Classes used in Building

Name Description

BuildingClassValue
«CodeList»

BuildingClassValue is a code list used to further classify a Building.

BuildingConstructiveEl
ementClassValue
«CodeList»

BuildingConstructiveElementClassValue is a code list used to further
classify a BuildingConstructiveElement.

BuildingConstructiveEl
ementFunctionValue
«CodeList»

BuildingConstructiveElementFunctionValue is a code list that enumerates
the different purposes of a BuildingConstructiveElement.

BuildingConstructiveEl
ementUsageValue
«CodeList»

BuildingConstructiveElementUsageValue is a code list that enumerates
the different uses of a BuildingConstructiveElement.

BuildingFunctionValue
«CodeList»

BuildingFunctionValue is a code list that enumerates the different
purposes of a Building.

BuildingFurnitureClass
Value
«CodeList»

BuildingFurnitureClassValue is a code list used to further classify a
BuildingFurniture.

BuildingFurnitureFunct
ionValue
«CodeList»

BuildingFurnitureFunctionValue is a code list that enumerates the
different purposes of a BuildingFurniture.

133

BuildingFurnitureUsag
eValue
«CodeList»

BuildingFurnitureUsageValue is a code list that enumerates the different
uses of a BuildingFurniture.

BuildingInstallationCla
ssValue
«CodeList»

BuildingInstallationClassValue is a code list used to further classify a
BuildingInstallation.

BuildingInstallationFun
ctionValue
«CodeList»

BuildingInstallationFunctionValue is a code list that enumerates the
different purposes of a BuildingInstallation.

BuildingInstallationUsa
geValue
«CodeList»

BuildingInstallationUsageValue is a code list that enumerates the
different uses of a BuildingInstallation.

BuildingRoomClassValu
e
«CodeList»

BuildingRoomClassValue is a code list used to further classify a
BuildingRoom.

BuildingRoomFunction
Value
«CodeList»

BuildingRoomFunctionValue is a code list that enumerates the different
purposes of a BuildingRoom.

BuildingRoomUsageVal
ue
«CodeList»

BuildingRoomUsageValue is a code list that enumerates the different uses
of a BuildingRoom.

BuildingSubdivisionCla
ssValue
«CodeList»

BuildingSubdivisionClassValue is a code list used to further classify a
BuildingSubdivision.

BuildingSubdivisionFu
nctionValue
«CodeList»

BuildingSubdivisionFunctionValue is a code list that enumerates the
different purposes of a BuildingSubdivision.

BuildingSubdivisionUsa
geValue
«CodeList»

BuildingSubdivisionUsageValue is a code list that enumerates the
different uses of a BuildingSubdivision.

BuildingUsageValue
«CodeList»

BuildingUsageValue is a code list that enumerates the different uses of a
Building.

RoofTypeValue
«CodeList»

RoofTypeValue is a code list that enumerates different roof types.

RoomElevationReferen
ceValue
«CodeList»

RoomElevationReferenceValue is a code list that enumerates the different
elevation reference levels used to measure room heights.

8.17.3. Additional Information

Additional information about the Building Module can be found in the OGC CityGML 3.0 Users
Guide

134

http://docs.opengeospatial.org/DRAFTS/20-066.html
http://docs.opengeospatial.org/DRAFTS/20-066.html

8.18. Tunnel

Requirements Class

http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-tunnel

Target type Implementation Specification

Dependency /req/req-class-core

Dependency /req/req-class-construction

The Tunnel module provides the representation of thematic and spatial aspects of tunnels. Tunnels
are horizontal or sloping enclosed passage ways of a certain length, mainly underground or
underwater. Tunnels are intended for passing obstacles such as mountains, waterways or other
traffic routes by humans, animals or things.

Tunnels are represented in the UML model by the top-level feature type Tunnel, which is the main
class of the Tunnel module. Tunnels can physically or functionally be subdivided into tunnel parts.
In addition, tunnels can be decomposed into structural elements, such as walls, slabs, staircases,
and beams.

The interior of tunnels is represented by hollow spaces. This allows a virtual accessibility of tunnels
such as for driving through a tunnel, for simulating disaster management, or for presenting the
light illumination within a tunnel.

Tunnels can contain installations and furniture. Installations are permanent parts of a tunnel that
strongly affect the outer or inner appearance of the tunnel and that cannot be moved. Examples are
stairs, railings, radiators or pipes. In contrast, furniture represents moveable objects inside a
tunnel, like movable equipment in control areas.

Tunnels can be bounded by different types of surfaces. In this way, the outer structure of tunnels
can be differentiated semantically into wall surfaces, roof surfaces, ground surfaces, outer floor
surfaces, and outer ceiling surfaces, whereas the visible surface of hollow spaces can be structured
into interior wall surfaces, floor surfaces, and ceiling surfaces. Furthermore, the openings of
tunnels, i.e. windows and doors, can be represented including their corresponding surfaces.

The UML diagram of the Tunnel module is depicted in Figure 62. The Tunnel module inherits
concepts from the Construction module (cf. Section 8.15). The Construction module defines objects
that are common to all types of construction, such as the different surface types and the openings. A
detailed discussion of the Requirements Class Tunnel can be found in the CityGML 3.0 Users Guide.

135

http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-tunnel
http://docs.opengeospatial.org/DRAFTS/20-066.html

Figure 62. UML diagram of the Tunnel Model.

The ADE data types provided for the Tunnel module are illustrated in Figure 63.

Figure 63. ADE classes of the CityGML Tunnel module.

The Code Lists provided for the Tunnel module are illustrated in Figure 64.

136

Figure 64. Codelists from the CityGML Tunnel module.

Table 70 lists the surfaces that are allowed as thematic surface boundaries of the space classes
defined in the Tunnel module:

Table 70. Tunnel space classes and their allowed thematic surface boundaries

Space class Allowed space boundaries

AbstractTunnel • Construction::AbstractConstructionSurface and all subclasses, i.e.
 Construction::GroundSurface,
 Construction::RoofSurface,
 Construction::CeilingSurface,
 Construction::OuterCeilingSurface,
 Construction::FloorSurface,
 Construction::OuterFloorSurface,
 Construction::WallSurface,
 Construction::InteriorWallSurface

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

137

HollowSpace • Construction::AbstractConstructionSurface and all subclasses, i.e.
 Construction::GroundSurface,
 Construction::RoofSurface,
 Construction::CeilingSurface,
 Construction::OuterCeilingSurface,
 Construction::FloorSurface,
 Construction::OuterFloorSurface,
 Construction::WallSurface,
 Construction::InteriorWallSurface

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

Tunnel • Construction::AbstractConstructionSurface and all subclasses, i.e.
 Construction::GroundSurface,
 Construction::RoofSurface,
 Construction::CeilingSurface,
 Construction::OuterCeilingSurface,
 Construction::FloorSurface,
 Construction::OuterFloorSurface,
 Construction::WallSurface,
 Construction::InteriorWallSurface

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

TunnelConstructiveEle
ment

• Construction::AbstractConstructionSurface and all subclasses, i.e.
 Construction::GroundSurface,
 Construction::RoofSurface,
 Construction::CeilingSurface,
 Construction::OuterCeilingSurface,
 Construction::FloorSurface,
 Construction::OuterFloorSurface,
 Construction::WallSurface,
 Construction::InteriorWallSurface

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

TunnelFurniture No boundaries allowed

138

TunnelInstallation • Construction::AbstractConstructionSurface and all subclasses, i.e.
 Construction::GroundSurface,
 Construction::RoofSurface,
 Construction::CeilingSurface,
 Construction::OuterCeilingSurface,
 Construction::FloorSurface,
 Construction::OuterFloorSurface,
 Construction::WallSurface,
 Construction::InteriorWallSurface

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

TunnelPart • Construction::AbstractConstructionSurface and all subclasses, i.e.
 Construction::GroundSurface,
 Construction::RoofSurface,
 Construction::CeilingSurface,
 Construction::OuterCeilingSurface,
 Construction::FloorSurface,
 Construction::OuterFloorSurface,
 Construction::WallSurface,
 Construction::InteriorWallSurface

• Core::ClosureSurface

• Generics::GenericThematicSurface

• possible classes from ADEs

8.18.1. Requirements

The following requirement defines the rules governing implementation of the CityGML Tunnel
Module as an Implementation Specification.

Requirement 45 /req/tunnel/classes

For each UML class defined or referenced in the Tunnel Package:

A The Implementation Specification SHALL contain an element
which represents the same concept as that defined for the UML
class.

B The Implementation Specification SHALL represent associations
with the same source, target, direction, roles, and multiplicities as
those of the UML class.

C The implementation Specification SHALL represent the attributes
of the UML class including the name, definition, type, and
multiplicity.

139

D The implementation Specification SHALL represent the attributes
of all superclasses of the UML class including the name,
definition, type, and multiplicity.

E The implementation Specification SHALL represent the
associations of all superclasses of the UML class including the
source, target, direction, roles, and multiplicity.

F The Implementation Specification SHALL specify how an
implementation observes all constraints the Conceptual Model
imposes on the UML class.

The implementation of this Module is further constrained by the following spatial boundary
requirement:

Requirement 46 /req/tunnel/boundaries

Table 70 lists the surfaces that are allowed as thematic surface boundaries of the space
classes defined in the Tunnel module. An Implementation Specification SHALL only
support the boundaries described in Table 70

The use of extension capabilities by Tunnel elements is constrained by the following requirement:

Requirement 47 /req/tunnel/ade/use

ADE element and property extensions SHALL NOT be used unless conformance with the
ADE Requirements Class can be demonstrated.

8.18.2. Class Definitions

Table 71. Classes used in Tunnel

Class Description

Tunnel
«TopLevelFeatureType»

A Tunnel represents a horizontal or sloping enclosed passage way of a
certain length, mainly underground or underwater. [cf. ISO 6707-1]

AbstractTunnel
«FeatureType»

AbstractTunnel is an abstract superclass representing the common
attributes and associations of the classes Tunnel and TunnelPart.

HollowSpace
«FeatureType»

A HollowSpace is a space within a Tunnel or TunnelPart intended for
certain functions (e.g. transport or passage ways, service rooms,
emergency shelters). A HollowSpace is bounded physically and/or
virtually (e.g. by ClosureSurfaces or GenericSurfaces).

TunnelConstructiveEle
ment
«FeatureType»

A TunnelConstructiveElement is an element of a Tunnel which is
essential from a structural point of view. Examples are walls, slabs,
beams.

TunnelFurniture
«FeatureType»

A TunnelFurniture is an equipment for occupant use, usually not fixed to
the tunnel. [cf. ISO 6707-1]

140

TunnelInstallation
«FeatureType»

A TunnelInstallation is a permanent part of a Tunnel (inside and/or
outside) which does not have the significance of a TunnelPart. In contrast
to TunnelConstructiveElement, a TunnelInstallation is not essential from
a structural point of view. Examples are stairs, antennas or railings.

TunnelPart
«FeatureType»

A TunnelPart is a physical or functional subdivision of a Tunnel. It would
be considered a Tunnel, if it were not part of a collection of other
TunnelParts.

Table 72. Data Types used in Tunnel

Name Description

ADEOfAbstractTunnel
«DataType»

ADEOfAbstractTunnel acts as a hook to define properties within an ADE
that are to be added to AbstractTunnel.

ADEOfHollowSpace
«DataType»

ADEOfHollowSpace acts as a hook to define properties within an ADE
that are to be added to a HollowSpace.

ADEOfTunnel
«DataType»

ADEOfTunnel acts as a hook to define properties within an ADE that are
to be added to a Tunnel.

ADEOfTunnelConstruct
iveElement
«DataType»

ADEOfTunnelConstructiveElement acts as a hook to define properties
within an ADE that are to be added to a TunnelConstructiveElement.

ADEOfTunnelFurniture
«DataType»

ADEOfTunnelFurniture acts as a hook to define properties within an ADE
that are to be added to a TunnelFurniture.

ADEOfTunnelInstallatio
n
«DataType»

ADEOfTunnelInstallation acts as a hook to define properties within an
ADE that are to be added to a TunnelInstallation.

ADEOfTunnelPart
«DataType»

ADEOfTunnelPart acts as a hook to define properties within an ADE that
are to be added to a TunnelPart.

Table 73. CodeList Classes used in Tunnel

Name Description

HollowSpaceClassValue
«CodeList»

HollowSpaceClassValue is a code list used to further classify a
HollowSpace.

HollowSpaceFunctionV
alue
«CodeList»

HollowSpaceFunctionValue is a code list that enumerates the different
purposes of a HollowSpace.

HollowSpaceUsageValu
e
«CodeList»

HollowSpaceUsageValue is a code list that enumerates the different uses
of a HollowSpace.

TunnelClassValue
«CodeList»

TunnelClassValue is a code list used to further classify a Tunnel.

TunnelConstructiveEle
mentClassValue
«CodeList»

TunnelConstructiveElementClassValue is a code list used to further
classify a TunnelConstructiveElement.

141

TunnelConstructiveEle
mentFunctionValue
«CodeList»

TunnelConstructiveElementFunctionValue is a code list that enumerates
the different purposes of a TunnelConstructiveElement.

TunnelConstructiveEle
mentUsageValue
«CodeList»

TunnelConstructiveElementUsageValue is a code list that enumerates the
different uses of a TunnelConstructiveElement.

TunnelFunctionValue
«CodeList»

TunnelFunctionValue is a code list that enumerates the different
purposes of a Tunnel.

TunnelFurnitureClassV
alue
«CodeList»

TunnelFurnitureClassValue is a code list used to further classify a
TunnelFurniture.

TunnelFurnitureFuncti
onValue
«CodeList»

TunnelFurnitureFunctionValue is a code list that enumerates the
different purposes of a TunnelFurniture.

TunnelFurnitureUsage
Value
«CodeList»

TunnelFurnitureUsageValue is a code list that enumerates the different
uses of a TunnelFurniture.

TunnelInstallationClass
Value
«CodeList»

TunnelInstallationClassValue is a code list used to further classify a
TunnelInstallation.

TunnelInstallationFunc
tionValue
«CodeList»

TunnelInstallationFunctionValue is a code list that enumerates the
different purposes of a TunnelInstallation.

TunnelInstallationUsag
eValue
«CodeList»

TunnelInstallationUsageValue is a code list that enumerates the different
uses of a TunnelInstallation.

TunnelUsageValue
«CodeList»

TunnelUsageValue is a code list that enumerates the different uses of a
Tunnel.

8.18.3. Additional Information

Additional information about the Tunnel Module can be found in the OGC CityGML 3.0 Users Guide

142

http://docs.opengeospatial.org/DRAFTS/20-066.html

Chapter 9. CityGML Data Dictionary
The CityGML UML model is the normative definition of the CityGML Conceptual Model. The Data
Dictionary tables in this section were software generated from the UML model. As such, this section
provides a normative representation of the CityGML Conceptual Model.

An alternate representation can be found in the Conceptual Model in Chapter 8.

Figure 65. CityGML UML Packages

9.1. ISO Classes
The following classes are defined in ISO standards and used by the CityGML Conceptual Model.

9.1.1. Class AnyFeature (ISO 19109:2015)

AnyFeature

143

 Definition: AnyFeature is an abstract class that is the generalization of all feature types.
AnyFeature is an instance of the «metaclass» FeatureType [cf. ISO 19109].

 Subclass Of: none

 StereoType: «FeatureType»

Role name Target class and
multiplicity

Definition

FeatureType [1..1]

Note: Unless otherwise specified, all attribute and role names have the stereotype «Property»

9.1.2. Class CV_DiscreteGridPointCoverage (ISO 19123:2005)

CV_DiscreteGridPointCoverage

 Definition: A coverage that returns the same feature attribute values for every direct
position within any single spatial object, temporal object or spatiotemporal
object in its domain.

 Subclass Of: CV_DiscreteCoverage

 StereoType: «type»

Role name Target class and
multiplicity

Definition

element CV_GridPointValue
Pair [1..*]

valueAssignm
ent

CV_GridValuesMatr
ix [1..1]

Note: Unless otherwise specified, all attribute and role names have the stereotype «Property»

9.1.3. Class DirectPosition (ISO 19107: 2003)

DirectPosition

144

 Definition: DirectPosition object data types (Figure 14) hold the coordinates for a position
within some coordinate reference system. The coordinate reference system is
described in ISO 19111. Since DirectPositions, as data types, will often be
included in larger objects (such as GM_Objects) that have references to
ISO19111::SC_CRS, the DirectPosition::cordinateReferenceSystem may be left
NULL if this particular DirectPosition is included in a larger object with such
a reference to a SC_CRS. In this case, the
DirectPosition::cordinateReferenceSystem is implicitly assumed to take on the
value of the containing object’s SC_CRS.

 Subclass Of: None

 StereoType: None

Role name Target class and
multiplicity

Definition

CRS CRS [0..1]

CRS SC_CRS [0..1]

Attribute Value type and
multiplicity

Definition

coordinate Sequence<Number
> [1..1]

dimension Integer [1..1]

Note: Unless otherwise specified, all attribute and role names have the stereotype «Property»

9.1.4. Class GM_Object (ISO 19107: 2003)

GM_Object

145

 Definition: GM_Object is the root class of the geometric object taxonomy and supports
interfaces common to all geographically referenced geometric objects.
GM_Object instances are sets of direct positions in a particular coordinate
reference system. A GM_Object can be regarded as an infinite set of points
that satisfies the set operation interfaces for a set of direct positions,
TransfiniteSet<DirectPosition>. Since an infinite collection class cannot be
implemented directly, a Boolean test for inclusion shall be provided by the
GM_Object interface. This international standard concentrates on vector
geometry classes, but future work may use GM_Object as a root class without
modification. NOTE As a type, GM_Object does not have a well-defined default
state or value representation as a data type. Instantiated subclasses of
GM_Object will.

 Subclass Of: none

 StereoType: «type»

 Constraint: dimension() > boundary().dimension (Invariant):

 Constraint: boundary().notEmpty() implies boundary().dimension() = dimension() -1
(Invariant):

 Constraint: boundary().isEmpty() = isCycle() (Invariant):

Role name Target class and
multiplicity

Definition

Geometry [1..1]

TransfiniteSet<Dire
ctPosition> [1..1]

CV_DomainObject
[1..1]

CRS CRS [0..1]

CRS SC_CRS [0..1]

Note: Unless otherwise specified, all attribute and role names have the stereotype «Property»

9.1.5. Class GM_MultiCurve (ISO 19107: 2003)

GM_MultiCurve

146

 Definition: An aggregate class containing only instances of GM_OrientableCurve. The
association role “element” shall be the set of GM_OrientableCurves contained
in this GM_MultiCurve.

 Subclass Of: GM_MultiPrimitive

 StereoType: «type»

Attribute Value type and
multiplicity

Definition

length Length [1..1]

Note: Unless otherwise specified, all attribute and role names have the stereotype «Property»

9.1.6. Class GM_MultiPoint (ISO 19107:2003)

GM_MultiPoint

 Definition: GM_MultiPoint is an aggregate class containing only points. The association
role “element” shall be the set of GM_Points contained in this GM_MultiPoint.

 Subclass Of: GM_MultiPrimitive

 StereoType: «type»

Attribute Value type and
multiplicity

Definition

position Set<DirectPosition>
[1..1]

Note: Unless otherwise specified, all attribute and role names have the stereotype «Property»

9.1.7. Class GM_MultiSurface (ISO 19107:2003)

GM_MultiSurface

 Definition: An aggregate class containing only instances of GM_OrientableSurface. The
association role “element” shall be the set of GM_OrientableSurfaces
contained in this GM_MultiSurface.

 Subclass Of: GM_MultiPrimitive

 StereoType: «type»

147

Attribute Value type and
multiplicity

Definition

area Area [1..1]

perimeter Length [1..1]

Note: Unless otherwise specified, all attribute and role names have the stereotype «Property»

9.1.8. Class GM_Point (ISO 19107:2003)

GM_Point

 Definition: GM_Point is the basic data type for a geometric object consisting of one and
only one point.

 Subclass Of: GM_Primitive

 StereoType: «type»

Role name Target class and
multiplicity

Definition

Point [1..1]

composite GM_CompositePoin
t [0..*]

Attribute Value type and
multiplicity

Definition

position DirectPosition [1..1] The attribute "position" shall be the DirectPosition of this
GM_Point. GM_Point::position [1] : DirectPosition NOTE In
most cases, the state of a GM_Point is fully determined by its
position attribute. The only exception to this is if the
GM_Point has been subclassed to provide additional non-
geometric information such as symbology.

Note: Unless otherwise specified, all attribute and role names have the stereotype «Property»

9.1.9. Class GM_Solid (ISO 19107:2003)

GM_Solid

148

 Definition: GM_Solid, a subclass of GM_Primitive, is the basis for 3-dimensional
geometry. The extent of a solid is defined by the boundary surfaces.

 Subclass Of: GM_Primitive

 StereoType: «type»

Role name Target class and
multiplicity

Definition

composite GM_CompositeSoli
d [0..*]

Solid [1..1]

Note: Unless otherwise specified, all attribute and role names have the stereotype «Property»

9.1.10. Class GM_Surface (ISO 19107:2003)

GM_Surface

 Definition: GM_Surface is a subclass of GM_Primitive and is the basis for 2-dimensional
geometry. Unorientable surfaces such as the Möbius band are not allowed.
The orientation of a surface chooses an "up" direction through the choice of
the upward normal, which, if the surface is not a cycle, is the side of the
surface from which the exterior boundary appears counterclockwise.
Reversal of the surface orientation reverses the curve orientation of each
boundary component, and interchanges the conceptual "up" and "down"
direction of the surface. If the surface is the boundary of a solid, the "up"
direction is usually outward. For closed surfaces, which have no boundary,
the up direction is that of the surface patches, which must be consistent with
one another. Its included GM_SurfacePatches describe the interior structure
of a GM_Surface. NOTE Other than the restriction on orientability, no other
"validity" condition is required for GM_Surface.

 Subclass Of: GM_OrientableSurface

 StereoType: «type»

Role name Target class and
multiplicity

Definition

GM_GenericSurfac
e [1..1]

Building [0..*]

Note: Unless otherwise specified, all attribute and role names have the stereotype «Property»

149

9.1.11. Class GM_Tin (ISO 19107:2003)

GM_Tin

 Definition: A GM_Tin is a GM_TriangulatedSurface that uses the Delaunay algorithm or a
similar algorithm complemented with consideration for breaklines, stoplines
and maximum length of triangle sides (Figure 22). These networks satisfy the
Delaunay criterion away from the modifications: For each triangle in the
network, the circle passing through its vertexes does not contain, in its
interior, the vertex of any other triangle.

 Subclass Of: GM_TriangulatedSurface

 StereoType: «type»

Attribute Value type and
multiplicity

Definition

breakLines Set<GM_LineString
> [1..1]

controlPoint GM_Position [3..*]

maxLength Distance [1..1]

stopLines Set<GM_LineString
> [1..1]

Note: Unless otherwise specified, all attribute and role names have the stereotype «Property»

9.1.12. Class GM_TriangulatedSurface (ISO 19107:2003)

GM_TriangulatedSurface

 Definition: A GM_TriangulatedSurface is a GM_PolyhedralSurface that is composed only
of triangles (GM_Triangle). There is no restriction on how the triangulation is
derived.

 Subclass Of: GM_PolyhedralSurface

 StereoType: «type»

Note: Unless otherwise specified, all attribute and role names have the stereotype «Property»

9.1.13. Class SC_CRS (ISO 19111:2019)

SC_CRS

150

 Definition: Coordinate reference system which is usually single but may be compound.

 Subclass Of: IO_IdentifiedObjectBase, RS_ReferenceSystem

 StereoType: «type»

Role name Target class and
multiplicity

Definition

coordOperatio
nTo

CC_CoordinateOper
ation [0..*]

Not-navigable association from a Coordinate Operation that
uses ths CRS as its targetCRS.

grid CV_ReferenceableG
rid [0..*]

Attribute Value type and
multiplicity

Definition

scope CharacterString
[1..*]

Description of usage, or limitations of usage, for which this
CRS is valid. If unknown, enter "not known".

Note: Unless otherwise specified, all attribute and role names have the stereotype «Property»

9.1.14. Class TM_Position (ISO 19108:2006)

TM_Position

 Definition: TM_Position is a union class that consists of one of the data types listed as its
attributes. Date, Time, and DateTime are basic data types defined in ISO/TS
19103.

 Subclass Of: None

 StereoType: «Union»

Attribute Value type and
multiplicity

Definition

anyOther TM_TemporalPositi
on [1..1]

date8601 Date [1..1]

time8601 Time [1..1]

dateTime8601 DateTime [1..1]

Note: Unless otherwise specified, all attribute and role names have the stereotype «Property»

151

9.2. Core

 Description: The Core module defines the basic components of the CityGML data model.
The Core module defines abstract base classes that define the core properties
of more specialized thematic classes defined in other modules. The Core
module also defines concrete classes that are common to other modules, for
example basic data types.

 Parent Package: CityGML

 Stereotype: «ApplicationSchema»

9.2.1. Classes

AbstractAppearance

 Definition: AbstractAppearance is the abstract superclass to represent any kind of
appearance objects.

 Subclass of: AbstractFeatureWithLifespan

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

adeOfAbstract
Appearance

ADEOfAbstractApp
earance [0..*]

Augments AbstractAppearance with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

AbstractCityObject

 Definition: AbstractCityObject is the abstract superclass of all thematic classes within the
CityGML Conceptual Model.

 Subclass of: AbstractFeatureWithLifespan

 Stereotype: «FeatureType»

152

Role name Target class and
multiplicity

Definition

generalizesTo AbstractCityObject
[*]

Relates generalized representations of the same real-world
object in different Levels of Detail to the city object. The
direction of this relation is from the city object to the
corresponding generalized city objects.

genericAttrib
ute

AbstractGenericAtt
ribute [*]

Relates generic attributes to the city object.

dynamizer AbstractDynamizer
[*]

Relates Dynamizer objects to the city object. These allow
timeseries data to override static attribute values of the city
object.

appearance AbstractAppearanc
e [*]

Relates appearances to the city object.

externalRefer
ence

ExternalReference
[*]

References external objects in other information systems
that have a relation to the city object.

relatedTo AbstractCityObject
[*]

Relates other city objects to the city object. It also describes
how the city objects are related to each other.

Attribute Value type and
multiplicity

Definition

relativeToTer
rain

RelativeToTerrain
[0..1]

Describes the vertical position of the city object relative to
the surrounding terrain.

relativeToWat
er

RelativeToWater
[0..1]

Describes the vertical position of the city object relative to
the surrounding water surface.

adeOfAbstract
CityObject

ADEOfAbstractCity
Object [0..*]

Augments AbstractCityObject with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

AbstractDynamizer

 Definition: AbstractDynamizer is the abstract superclass to represent Dynamizer objects.

 Subclass of: AbstractFeatureWithLifespan

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

adeOfAbstract
Dynamizer

ADEOfAbstractDyn
amizer [0..*]

Augments AbstractDynamizer with properties defined in an
ADE.

153

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

AbstractFeature

 Definition: AbstractFeature is the abstract superclass of all feature types within the
CityGML Conceptual Model.

 Subclass of: AnyFeature

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

featureID ID [1..1] Specifies the unique identifier of the feature that is valid in
the instance document within which it occurs.

identifier ScopedName [0..1] Specifies the unique identifier of the feature that is valid
globally.

name GenericName [0..*] Specifies the name of the feature.

description CharacterString
[0..1]

Provides further information on the feature.

adeOfAbstract
Feature

ADEOfAbstractFeat
ure [0..*]

Augments AbstractFeature with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

AbstractFeatureWithLifespan

 Definition: AbstractFeatureWithLifespan is the base class for all CityGML features. This
class allows the optional specification of the real-world and database times
for the existence of each feature.

 Subclass of: AbstractFeature

 Stereotype: «FeatureType»

154

Attribute Value type and
multiplicity

Definition

creationDate DateTime [0..1] Indicates the date at which a CityGML feature was added to
the CityModel.

terminationD
ate

DateTime [0..1] Indicates the date at which a CityGML feature was removed
from the CityModel.

validFrom DateTime [0..1] Indicates the date at which a CityGML feature started to exist
in the real world.

validTo DateTime [0..1] Indicates the date at which a CityGML feature ended to exist
in the real world.

adeOfAbstract
FeatureWithL
ifespan

ADEOfAbstractFeat
ureWithLifespan
[0..*]

Augments AbstractFeatureWithLifespan with properties
defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

AbstractLogicalSpace

 Definition: AbstractLogicalSpace is the abstract superclass for all types of logical spaces.
Logical space refers to spaces that are not bounded by physical surfaces but
are defined according to thematic considerations.

 Subclass of: AbstractSpace

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

adeOfAbstract
LogicalSpace

ADEOfAbstractLogi
calSpace [0..*]

Augments AbstractLogicalSpace with properties defined in
an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

AbstractOccupiedSpace

 Definition: AbstractOccupiedSpace is the abstract superclass for all types of physically
occupied spaces. Occupied space refers to spaces that are partially or entirely
filled with matter.

 Subclass of: AbstractPhysicalSpace

 Stereotype: «FeatureType»

155

Role name Target class and
multiplicity

Definition

lod3ImplicitR
epresentation

ImplicitGeometry
[0..1]

Relates to an implicit geometry that represents the occupied
space in Level of Detail 3.

lod1ImplicitR
epresentation

ImplicitGeometry
[0..1]

Relates to an implicit geometry that represents the occupied
space in Level of Detail 1.

lod2ImplicitR
epresentation

ImplicitGeometry
[0..1]

Relates to an implicit geometry that represents the occupied
space in Level of Detail 2.

Attribute Value type and
multiplicity

Definition

adeOfAbstract
OccupiedSpac
e

ADEOfAbstractOcc
upiedSpace [0..*]

Augments AbstractOccupiedSpace with properties defined in
an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

AbstractPhysicalSpace

 Definition: AbstractPhysicalSpace is the abstract superclass for all types of physical
spaces. Physical space refers to spaces that are fully or partially bounded by
physical objects.

 Subclass of: AbstractSpace

 Stereotype: «FeatureType»

Role name Target class and
multiplicity

Definition

lod3TerrainIn
tersectionCur
ve

GM_MultiCurve
[0..1]

Relates to a 3D MultiCurve geometry that represents the
terrain intersection curve of the physical space in Level of
Detail 3.

lod2TerrainIn
tersectionCur
ve

GM_MultiCurve
[0..1]

Relates to a 3D MultiCurve geometry that represents the
terrain intersection curve of the physical space in Level of
Detail 2.

pointCloud AbstractPointCloud
[0..1]

Relates to a 3D PointCloud that represents the physical space.

lod1TerrainIn
tersectionCur
ve

GM_MultiCurve
[0..1]

Relates to a 3D MultiCurve geometry that represents the
terrain intersection curve of the physical space in Level of
Detail 1.

156

Attribute Value type and
multiplicity

Definition

adeOfAbstract
PhysicalSpace

ADEOfAbstractPhy
sicalSpace [0..*]

Augments AbstractPhysicalSpace with properties defined in
an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

AbstractPointCloud

 Definition: AbstractPointCloud is the abstract superclass to represent PointCloud objects.

 Subclass of: AbstractFeature

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

adeOfAbstract
PointCloud

ADEOfAbstractPoin
tCloud [0..*]

Augments AbstractPointCloud with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

AbstractSpace

 Definition: AbstractSpace is the abstract superclass for all types of spaces. A space is an
entity of volumetric extent in the real world.

 Subclass of: AbstractCityObject

 Stereotype: «FeatureType»

157

Role name Target class and
multiplicity

Definition

lod2MultiCurv
e

GM_MultiCurve
[0..1]

Relates to a 3D MultiCurve geometry that represents the
space in Level of Detail 2.

lod0MultiCurv
e

GM_MultiCurve
[0..1]

Relates to a 3D MultiCurve geometry that represents the
space in Level of Detail 0.

lod0MultiSurf
ace

GM_MultiSurface
[0..1]

Relates to a 3D MultiSurface geometry that represents the
space in Level of Detail 0.

lod2MultiSurf
ace

GM_MultiSurface
[0..1]

Relates to a 3D MultiSurface geometry that represents the
space in Level of Detail 2.

lod3MultiSurf
ace

GM_MultiSurface
[0..1]

Relates to a 3D MultiSurface geometry that represents the
space in Level of Detail 3.

lod0Point GM_Point [0..1] Relates to a 3D Point geometry that represents the space in
Level of Detail 0.

lod3Solid GM_Solid [0..1] Relates to a 3D Solid geometry that represents the space in
Level of Detail 3.

lod3MultiCurv
e

GM_MultiCurve
[0..1]

Relates to a 3D MultiCurve geometry that represents the
space in Level of Detail 3.

lod2Solid GM_Solid [0..1] Relates to a 3D Solid geometry that represents the space in
Level of Detail 2.

boundary AbstractSpaceBoun
dary [*]

Relates to surfaces that bound the space.

lod1Solid GM_Solid [0..1] Relates to a 3D Solid geometry that represents the space in
Level of Detail 1.

Attribute Value type and
multiplicity

Definition

spaceType SpaceType [0..1] Specifies the degree of openness of a space.

volume QualifiedVolume
[0..*]

Specifies qualified volumes related to the space.

area QualifiedArea [0..*] Specifies qualified areas related to the space.

adeOfAbstract
Space

ADEOfAbstractSpac
e [0..*]

Augments AbstractSpace with properties defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

AbstractSpaceBoundary

158

 Definition: AbstractSpaceBoundary is the abstract superclass for all types of space
boundaries. A space boundary is an entity with areal extent in the real world.
Space boundaries are objects that bound a Space. They also realize the
contact between adjacent spaces.

 Subclass of: AbstractCityObject

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

adeOfAbstract
SpaceBoundar
y

ADEOfAbstractSpac
eBoundary [0..*]

Augments AbstractSpaceBoundary with properties defined
in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

AbstractThematicSurface

 Definition: AbstractThematicSurface is the abstract superclass for all types of thematic
surfaces.

 Subclass of: AbstractSpaceBoundary

 Stereotype: «FeatureType»

Role name Target class and
multiplicity

Definition

lod1MultiSurf
ace

GM_MultiSurface
[0..1]

Relates to a 3D MultiSurface geometry that represents the
thematic surface in Level of Detail 1.

pointCloud AbstractPointCloud
[0..1]

Relates to a 3D PointCloud that represents the thematic
surface.

lod0MultiCurv
e

GM_MultiCurve
[0..1]

Relates to a 3D MultiCurve geometry that represents the
thematic surface in Level of Detail 0.

lod3MultiSurf
ace

GM_MultiSurface
[0..1]

Relates to a 3D MultiSurface geometry that represents the
thematic surface in Level of Detail 3.

lod0MultiSurf
ace

GM_MultiSurface
[0..1]

Relates to a 3D MultiSurface geometry that represents the
thematic surface in Level of Detail 0.

lod2MultiSurf
ace

GM_MultiSurface
[0..1]

Relates to a 3D MultiSurface geometry that represents the
thematic surface in Level of Detail 2.

159

Attribute Value type and
multiplicity

Definition

area QualifiedArea [0..*] Specifies qualified areas related to the thematic surface.

adeOfAbstract
ThematicSurf
ace

ADEOfAbstractThe
maticSurface [0..*]

Augments AbstractThematicSurface with properties defined
in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

AbstractUnoccupiedSpace

 Definition: AbstractUnoccupiedSpace is the abstract superclass for all types of physically
unoccupied spaces. Unoccupied space refers to spaces that are entirely or
mostly free of matter.

 Subclass of: AbstractPhysicalSpace

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

adeOfAbstract
UnoccupiedSp
ace

ADEOfAbstractUno
ccupiedSpace [0..*]

Augments AbstractUnoccupiedSpace with properties defined
in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

AbstractVersion

 Definition: AbstractVersion is the abstract superclass to represent Version objects.

 Subclass of: AbstractFeatureWithLifespan

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

adeOfAbstract
Version

ADEOfAbstractVers
ion [0..*]

Augments AbstractVersion with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

160

AbstractVersionTransition

 Definition: AbstractVersionTransition is the abstract superclass to represent
VersionTransition objects.

 Subclass of: AbstractFeatureWithLifespan

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

adeOfAbstract
VersionTransi
tion

ADEOfAbstractVers
ionTransition [0..*]

Augments AbstractVersionTransition with properties defined
in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

Address

 Definition: Address represents an address of a city object.

 Subclass of: AbstractFeature

 Stereotype: «FeatureType»

Role name Target class and
multiplicity

Definition

multiPoint GM_MultiPoint
[0..1]

Relates to the MultiPoint geometry of the Address. The
geometry relates the address spatially to a city object.

xalAddress XALAddress [1..1] Relates an OASIS address object to the Address.

Attribute Value type and
multiplicity

Definition

adeOfAddress ADEOfAddress
[0..*]

Augments the Address with properties defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

CityModel

161

 Definition: CityModel is the container for all objects belonging to a city model.

 Subclass of: AbstractFeatureWithLifespan

 Stereotype: «FeatureType»

Role name Target class and
multiplicity

Definition

cityModelMe
mber

CityModelMember
[*]

Relates to all objects that are part of the CityModel.

Attribute Value type and
multiplicity

Definition

engineeringC
RS

EngineeringCRS
[0..1]

Specifies the local engineering coordinate reference system
of the CityModel that can be provided inline the CityModel
instead of referencing a well-known CRS definition. The
definition of an engineering CRS requires an anchor point
which relates the origin of the local coordinate system to a
point on the earth’s surface in order to facilitate the
transformation of coordinates from the local engineering
CRS.

adeOfCityMod
el

ADEOfCityModel
[0..*]

Augments the CityModel with properties defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

CityObjectRelation

 Definition: CityObjectRelation represents a specific relation from the city object in which
the relation is included to another city object.

 Subclass of: None

 Stereotype: «ObjectType»

Role name Target class and
multiplicity

Definition

genericAttrib
ute

AbstractGenericAtt
ribute [*]

Relates generic attributes to the CityObjectRelation.

162

Attribute Value type and
multiplicity

Definition

relationType RelationTypeValue
[1..1]

Indicates the specific type of the CityObjectRelation.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

ClosureSurface

 Definition: ClosureSurface is a special type of thematic surface used to close holes in
volumetric objects. Closure surfaces are virtual (non-physical) surfaces.

 Subclass of: AbstractThematicSurface

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

adeOfClosure
Surface

ADEOfClosureSurfa
ce [0..*]

Augments the ClosureSurface with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

ImplicitGeometry

 Definition: ImplicitGeometry is a geometry representation where the shape is stored
only once as a prototypical geometry. For example a tree or other vegetation
object, a traffic light or a traffic sign. This prototypic geometry object can be
re-used or referenced many times, wherever the corresponding feature
occurs in the 3D city model.

 Subclass of: None

 Stereotype: «ObjectType»

163

Role name Target class and
multiplicity

Definition

relativeGeom
etry

GM_Object [0..1] Relates to a prototypical geometry in a local coordinate
system stored inline with the city model.

referencePoin
t

GM_Point [1..1] Relates to a 3D Point geometry that represents the base point
of the object in the world coordinate system.

appearance AbstractAppearanc
e [*]

Relates appearances to the ImplicitGeometry.

Attribute Value type and
multiplicity

Definition

objectID ID [1..1] Specifies the unique identifier of the ImplicitGeometry.

transformatio
nMatrix

TransformationMa
trix4x4 [1..1]

Specifies the mathematical transformation (translation,
rotation, and scaling) between the prototypical geometry and
the actual spatial position of the object.

mimeType MimeTypeValue
[0..1]

Specifies the MIME type of the external file that stores the
prototypical geometry.

libraryObject URI [0..1] Specifies the URI that points to the prototypical geometry
stored in an external file.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

9.2.2. Data Types

AbstractGenericAttribute

 Definition: AbstractGenericAttribute is the abstract superclass for all types of generic
attributes.

 Subclass of: None

 Stereotype: «DataType»

ADEOfAbstractAppearance

 Definition: ADEOfAbstractAppearance acts as a hook to define properties within an ADE
that are to be added to AbstractAppearance.

 Subclass of: None

 Stereotype: «DataType»

164

ADEOfAbstractCityObject

 Definition: ADEOfAbstractCityObject acts as a hook to define properties within an ADE
that are to be added to AbstractCityObject.

 Subclass of: None

 Stereotype: «DataType»

ADEOfAbstractDynamizer

 Definition: ADEOfAbstractDynamizer acts as a hook to define properties within an ADE
that are to be added to AbstractDynamizer.

 Subclass of: None

 Stereotype: «DataType»

ADEOfAbstractFeature

 Definition: ADEOfAbstractFeature acts as a hook to define properties within an ADE that
are to be added to AbstractFeature.

 Subclass of: None

 Stereotype: «DataType»

ADEOfAbstractFeatureWithLifespan

 Definition: ADEOfAbstractFeatureWithLifespan acts as a hook to define properties
within an ADE that are to be added to AbstractFeatureWithLifespan.

 Subclass of: None

 Stereotype: «DataType»

ADEOfAbstractLogicalSpace

 Definition: ADEOfAbstractLogicalSpace acts as a hook to define properties within an ADE
that are to be added to AbstractLogicalSpace.

 Subclass of: None

 Stereotype: «DataType»

165

ADEOfAbstractOccupiedSpace

 Definition: ADEOfAbstractOccupiedSpace acts as a hook to define properties within an
ADE that are to be added to AbstractOccupiedSpace.

 Subclass of: None

 Stereotype: «DataType»

ADEOfAbstractPhysicalSpace

 Definition: ADEOfAbstractPhysicalSpace acts as a hook to define properties within an
ADE that are to be added to AbstractPhysicalSpace.

 Subclass of: None

 Stereotype: «DataType»

ADEOfAbstractPointCloud

 Definition: ADEOfAbstractPointCloud acts as a hook to define properties within an ADE
that are to be added to AbstractPointCloud.

 Subclass of: None

 Stereotype: «DataType»

ADEOfAbstractSpace

 Definition: ADEOfAbstractSpace acts as a hook to define properties within an ADE that
are to be added to AbstractSpace.

 Subclass of: None

 Stereotype: «DataType»

ADEOfAbstractSpaceBoundary

 Definition: ADEOfAbstractSpaceBoundary acts as a hook to define properties within an
ADE that are to be added to AbstractSpaceBoundary.

 Subclass of: None

 Stereotype: «DataType»

166

ADEOfAbstractThematicSurface

 Definition: ADEOfAbstractThematicSurface acts as a hook to define properties within an
ADE that are to be added to AbstractThematicSurface.

 Subclass of: None

 Stereotype: «DataType»

ADEOfAbstractUnoccupiedSpace

 Definition: ADEOfAbstractUnoccupiedSpace acts as a hook to define properties within an
ADE that are to be added to AbstractUnoccupiedSpace.

 Subclass of: None

 Stereotype: «DataType»

ADEOfAbstractVersion

 Definition: ADEOfAbstractVersion acts as a hook to define properties within an ADE that
are to be added to AbstractVersion.

 Subclass of: None

 Stereotype: «DataType»

ADEOfAbstractVersionTransition

 Definition: ADEOfAbstractVersionTransition acts as a hook to define properties within an
ADE that are to be added to AbstractVersionTransition.

 Subclass of: None

 Stereotype: «DataType»

ADEOfAddress

 Definition: ADEOfAddress acts as a hook to define properties within an ADE that are to
be added to an Address.

 Subclass of: None

 Stereotype: «DataType»

167

ADEOfCityModel

 Definition: ADEOfCityModel acts as a hook to define properties within an ADE that are to
be added to a CityModel.

 Subclass of: None

 Stereotype: «DataType»

ADEOfClosureSurface

 Definition: ADEOfClosureSurface acts as a hook to define properties within an ADE that
are to be added to a ClosureSurface.

 Subclass of: None

 Stereotype: «DataType»

ExternalReference

 Definition: ExternalReference is a reference to a corresponding object in another
information system, for example in the German cadastre (ALKIS), the
German topographic information system (ATKIS), or the OS UK MasterMap®.

 Subclass of: None

 Stereotype: «DataType»

Attribute Value type and
multiplicity

Definition

targetResourc
e

URI [1..1] Specifies the URI that points to the object in the external
information system.

informationSy
stem

URI [0..1] Specifies the URI that points to the external information
system.

relationType URI [0..1] Specifies a URI that additionally qualifies the
ExternalReference. The URI can point to a definition from an
external ontology (e.g. the sameAs relation from OWL) and
allows for mapping the ExternalReference to RDF triples.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

168

Occupancy

 Definition: Occupancy is an application-dependent indication of what is contained by a
feature.

 Subclass of: None

 Stereotype: «DataType»

Attribute Value type and
multiplicity

Definition

numberOfOcc
upants

Integer [1..1] Indicates the number of occupants contained by a feature.

interval IntervalValue [0..1] Indicates the time period the occupants are contained by a
feature.

occupantType OccupantTypeValu
e [0..1]

Indicates the specific type of the occupants that are
contained by a feature.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

QualifiedArea

 Definition: QualifiedArea is an application-dependent measure of the area of a space or
of a thematic surface.

 Subclass of: None

 Stereotype: «DataType»

Attribute Value type and
multiplicity

Definition

area Area [1..1] Specifies the value of the QualifiedArea.

typeOfArea QualifiedAreaType
Value [1..1]

Indicates the specific type of the QualifiedArea.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

QualifiedVolume

 Definition: QualifiedVolume is an application-dependent measure of the volume of a
space.

 Subclass of: None

 Stereotype: «DataType»

169

Attribute Value type and
multiplicity

Definition

volume Volume [1..1] Specifies the value of the QualifiedVolume.

typeOfVolume QualifiedVolumeTy
peValue [1..1]

Indicates the specific type of the QualifiedVolume.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

XALAddress

 Definition: XALAddress represents address details according to the OASIS xAL standard.

 Subclass of: None

 Stereotype: «DataType»

9.2.3. Basic Types

Code

 Definition: Code is a basic type for a String-based term, keyword, or name that can
additionally have a code space.

 Subclass of: None

 Stereotype: «BasicType»

Attribute Value type and
multiplicity

Definition

codeSpace URI [0..1] Associates the Code with an authority that controls the term,
keyword, or name.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

DoubleBetween0and1

170

 Definition: DoubleBetween0and1 is a basic type for values, which are greater or equal
than 0 and less or equal than 1. The type is used for color encoding, for
example.

 Subclass of: None

 Stereotype: «BasicType»

 Constraint: valueBetween0and1 (OCL): inv: DoubleBetween0and1.allInstances() →
forAll(p | p > = 0 and p < = 1)

DoubleBetween0and1List

 Definition: DoubleBetween0and1List is a basic type that represents a list of double
values greater or equal than 0 and less or equal than 1. The type is used for
color encoding, for example.

 Subclass of: None

 Stereotype: «BasicType»

Attribute Value type and
multiplicity

Definition

list DoubleBetween0an
d1 [1..1]

Specifies the list of double values.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

DoubleList

 Definition: DoubleList is an ordered sequence of double values.

 Subclass of: None

 Stereotype: «BasicType»

Attribute Value type and
multiplicity

Definition

list Real [1..1] Specifies the list of double values.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

DoubleOrNilReasonList

171

 Definition: DoubleOrNilReasonList is a basic type that represents a list of double values
and/or nil reasons.

 Subclass of: None

 Stereotype: «BasicType»

Attribute Value type and
multiplicity

Definition

list DoubleOrNilReaso
n [1..1]

Specifies the list of double values and/or nil reasons.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

ID

 Definition: ID is a basic type that represents a unique identifier.

 Subclass of: None

 Stereotype: «BasicType»

IntegerBetween0and3

 Definition: IntegerBetween0and3 is a basic type for integer values, which are greater or
equal than 0 and less or equal than 3. The type is used for encoding the LOD
number.

 Subclass of: None

 Stereotype: «BasicType»

 Constraint: valueBetween0and3 (OCL): inv: IntegerBetween0and3.allInstances() →
forAll(p | p > = 0 and p < = 3)

MeasureOrNilReasonList

 Definition: MeasureOrNilReasonList is a basic type that represents a list of double values
and/or nil reasons together with a unit of measurement.

 Subclass of: DoubleOrNilReasonList

 Stereotype: «BasicType»

172

Attribute Value type and
multiplicity

Definition

uom UnitOfMeasure
[1..1]

Specifies the unit of measurement of the double values.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

TransformationMatrix2x2

 Definition: TransformationMatrix2x2 is a 2 by 2 matrix represented as a list of four
double values in row major order.

 Subclass of: DoubleList

 Stereotype: «BasicType»

 Constraint: lengthOfList (OCL): inv: list→size() = 4

TransformationMatrix3x4

 Definition: TransformationMatrix3x4 is a 3 by 4 matrix represented as a list of twelve
double values in row major order.

 Subclass of: DoubleList

 Stereotype: «BasicType»

 Constraint: lengthOfList (OCL): inv: list→size() = 12

TransformationMatrix4x4

 Definition: TransformationMatrix4x4 is a 4 by 4 matrix represented as a list of sixteen
double values in row major order.

 Subclass of: DoubleList

 Stereotype: «BasicType»

 Constraint: lengthOfList (OCL): inv: list → size() = 16

9.2.4. Unions

CityModelMember

173

 Definition: CityModelMember is a union type that enumerates the different types of
objects that can occur as members of a city model.

 Stereotype: «Union»

Member
name

Type Definition

cityObjectMe
mber

AbstractCityObject
[1..1]

Specifies the city objects that are part of the CityModel.

appearanceM
ember

AbstractAppearanc
e [1..1]

Specifies the appearances of the CityModel.

versionMemb
er

AbstractVersion
[1..1]

Specifies the different versions of the CityModel.

versionTransi
tionMember

AbstractVersionTra
nsition [1..1]

Specifies the transitions between the different versions of
the CityModel.

featureMemb
er

AbstractFeature
[1..1]

Specifies the feature objects that are part of the CityModel. It
allows to include objects that are not derived from a class
defined in the CityGML conceptual model, but from the ISO
19109 class AnyFeature.

DoubleOrNilReason

 Definition: DoubleOrNilReason is a union type that allows for choosing between a double
value and a nil reason.

 Stereotype: «Union»

Member
name

Type Definition

value Real [1..1] Specifies the double value.

nilReason NilReason [1..1] Specifies the nil reason.

NilReason

 Definition: NilReason is a union type that allows for choosing between two different
types of nil reason.

 Stereotype: «Union»

174

Member
name

Type Definition

nilReasonEnu
meration

NilReasonEnumera
tion [1..1]

Indicates a nil reason that is provided in a code list.

URI URI [1..1] Specifies a URI that points to a resource that describes the nil
reason.

9.2.5. Code Lists

IntervalValue

 Definition: IntervalValue is a code list used to specify a time period.

 Stereotype: «CodeList»

MimeTypeValue

 Definition: MimeTypeValue is a code list used to specify the MIME type of a referenced
resource.

 Stereotype: «CodeList»

NilReasonEnumeration

 Definition: NilReasonEnumeration is a code list that enumerates the different nil
reasons.

 Stereotype: «CodeList»

OccupantTypeValue

 Definition: OccupantTypeValue is a code list used to classify occupants.

 Stereotype: «CodeList»

OtherRelationTypeValue

 Definition: OtherRelationTypeValue is a code list used to classify other types of city object
relations.

 Stereotype: «CodeList»

175

QualifiedAreaTypeValue

 Definition: QualifiedAreaTypeValue is a code list used to specify area types.

 Stereotype: «CodeList»

QualifiedVolumeTypeValue

 Definition: QualifiedVolumeTypeValue is a code list used to specify volume types.

 Stereotype: «CodeList»

RelationTypeValue

 Definition: RelationTypeValue is a code list used to classify city object relations.

 Stereotype: «CodeList»

TemporalRelationTypeValue

 Definition: TemporalRelationTypeValue is a code list used to classify temporal city object
relations.

 Stereotype: «CodeList»

TopologicalRelationTypeValue

 Definition: TopologicalRelationTypeValue is a code list used to classify topological city
object relations.

 Stereotype: «CodeList»

9.2.6. Enumerations

RelativeToTerrain

Definition: RelativeToTerrain enumerates the spatial relations of a city object relative to
terrain in a qualitative way.

StereoType: <<Enumeration>>

176

Literal value Definition

entirelyAboveTerr
ain

Indicates that the city object is located entirely above the terrain.

substantiallyAbov
eTerrain

Indicates that the city object is for the most part located above the terrain.

substantiallyAbov
eAndBelowTerrai

n

Indicates that the city object is located half above the terrain and half below
the terrain.

substantiallyBelo
wTerrain

Indicates that the city object is for the most part located below the terrain.

entirelyBelowTerr
ain

Indicates that the city object is located entirely below the terrain.

RelativeToWater

Definition: RelativeToWater enumerates the spatial relations of a city object relative to
the water surface in a qualitative way.

StereoType: <<Enumeration>>

Literal value Definition

entirelyAboveWat
erSurface

Indicates that the city object is located entirely above the water surface.

substantiallyAbov
eWaterSurface

Indicates that the city object is for the most part located above the water
surface.

substantiallyAbov
eAndBelowWater

Surface

Indicates that the city object is located half above the water surface and half
below the water surface.

substantiallyBelo
wWaterSurface

Indicates that the city object is for the most part located below the water
surface.

entirelyBelowWat
erSurface

Indicates that the city object is located entirely below the water surface.

temporarilyAbove
AndBelowWaterS

urface

Indicates that the city object is temporarily located above or below the water
level, because the height of the water surface is varying.

177

SpaceType

Definition: SpaceType is an enumeration that characterises a space according to its
closure properties.

StereoType: <<Enumeration>>

Literal value Definition

closed Indicates that the space has boundaries at the bottom, at the top, and on all
sides.

open Indicates that the space has at maximum a boundary at the bottom.

semiOpen Indicates that the space has a boundary at the bottom and on at least one
side.

9.3. Appearance

 Description: The Appearance module supports the modelling of the observable surface
properties of CityGML features in the form of textures and material.

 Parent Package: CityGML

 Stereotype: «ApplicationSchema»

9.3.1. Classes

AbstractSurfaceData

 Definition: AbstractSurfaceData is the abstract superclass for different kinds of textures
and material.

 Subclass of: AbstractFeature

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

isFront Boolean [0..1] Indicates whether the texture or material is assigned to the
front side or the back side of the surface geometry object.

adeOfAbstract
SurfaceData

ADEOfAbstractSurf
aceData [0..*]

Augments AbstractSurfaceData with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

178

AbstractTexture

 Definition: AbstractTexture is the abstract superclass to represent the common attributes
of the classes ParameterizedTexture and GeoreferencedTexture.

 Subclass of: AbstractSurfaceData

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

imageURI URI [1..1] Specifies the URI that points to the external image data file.

mimeType MimeTypeValue
[0..1]

Specifies the MIME type of the external point cloud file.

textureType TextureType [0..1] Indicates the specific type of the texture.

wrapMode WrapMode [0..1] Specifies the behaviour of the texture when the texture is
smaller than the surface to which it is applied.

borderColor ColorPlusOpacity
[0..1]

Specifies the color of that part of the surface that is not
covered by the texture.

adeOfAbstract
Texture

ADEOfAbstractText
ure [0..*]

Augments AbstractTexture with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

Appearance

 Definition: An Appearance is a collection of surface data, i.e. observable properties for
surface geometry objects in the form of textures and material.

 Subclass of: AbstractAppearance

 Stereotype: «FeatureType»

Role name Target class and
multiplicity

Definition

surfaceData AbstractSurfaceDat
a [*]

Relates to the surface data that are part of the Appearance.

179

Attribute Value type and
multiplicity

Definition

theme CharacterString
[0..1]

Specifies the topic of the Appearance. Each Appearance
contains surface data for one theme only. Examples of
themes are infrared radiation, noise pollution, or
earthquake-induced structural stress.

adeOfAppeara
nce

ADEOfAppearance
[0..*]

Augments the Appearance with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

GeoreferencedTexture

 Definition: A GeoreferencedTexture is a texture that uses a planimetric projection. It
contains an implicit parameterization that is either stored within the image
file, an accompanying world file or specified using the orientation and
referencePoint elements.

 Subclass of: AbstractTexture

 Stereotype: «FeatureType»

Role name Target class and
multiplicity

Definition

referencePoin
t

GM_Point [0..1] Relates to the 2D Point geometry that represents the center
of the upper left image pixel in world space.

Attribute Value type and
multiplicity

Definition

preferWorldFi
le

Boolean [0..1] Indicates whether the georeference from the image file or
the accompanying world file should be preferred.

orientation TransformationMa
trix2x2 [0..1]

Specifies the rotation and scaling of the image in form of a
2x2 matrix.

target URI [0..*] Specifies the URI that points to the surface geometry objects
to which the texture is applied.

adeOfGeorefe
rencedTextur
e

ADEOfGeoreferenc
edTexture [0..*]

Augments the GeoreferencedTexture with properties defined
in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

180

ParameterizedTexture

 Definition: A ParameterizedTexture is a texture that uses texture coordinates or a
transformation matrix for parameterization.

 Subclass of: AbstractTexture

 Stereotype: «FeatureType»

Role name Target class and
multiplicity

Definition

textureParam
eterization

AbstractTexturePar
ameterization [*]

Relates to the texture coordinates or transformation matrices
used for parameterization.

Attribute Value type and
multiplicity

Definition

adeOfParamet
erizedTexture

ADEOfParameteriz
edTexture [0..*]

Augments the ParameterizedTexture with properties defined
in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

TextureAssociation

 Definition: TextureAssociation denotes the relation of a texture to a surface geometry
object.

 Subclass of: None

 Stereotype: «ObjectType»

Attribute Value type and
multiplicity

Definition

target URI [1..1] Specifies the URI that points to the surface geometry object to
which the texture is applied.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

X3DMaterial

181

 Definition: X3DMaterial defines properties for surface geometry objects based on the
material definitions from the X3D and COLLADA standards.

 Subclass of: AbstractSurfaceData

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

ambientInten
sity

DoubleBetween0an
d1 [0..1]

Specifies the minimum percentage of diffuseColor that is
visible regardless of light sources.

diffuseColor Color [0..1] Specifies the color of the light diffusely reflected by the
surface geometry object.

emissiveColor Color [0..1] Specifies the color of the light emitted by the surface
geometry object.

specularColor Color [0..1] Specifies the color of the light directly reflected by the
surface geometry object.

shininess DoubleBetween0an
d1 [0..1]

Specifies the sharpness of the specular highlight.

transparency DoubleBetween0an
d1 [0..1]

Specifies the degree of transparency of the surface geometry
object.

isSmooth Boolean [0..1] Specifies which interpolation method is used for the shading
of the surface geometry object. If the attribute is set to true,
vertex normals should be used for shading (Gouraud
shading). Otherwise, normals should be constant for a
surface patch (flat shading).

target URI [0..*] Specifies the URI that points to the surface geometry objects
to which the material is applied.

adeOfX3DMat
erial

ADEOfX3DMaterial
[0..*]

Augments the X3DMaterial with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

9.3.2. Data Types

AbstractTextureParameterization

 Definition: AbstractTextureParameterization is the abstract superclass for different
kinds of texture parameterizations.

 Subclass of: None

 Stereotype: «DataType»

182

ADEOfAbstractSurfaceData

 Definition: ADEOfAbstractSurfaceData acts as a hook to define properties within an ADE
that are to be added to AbstractSurfaceData.

 Subclass of: None

 Stereotype: «DataType»

ADEOfAbstractTexture

 Definition: ADEOfAbstractTexture acts as a hook to define properties within an ADE that
are to be added to AbstractTexture.

 Subclass of: None

 Stereotype: «DataType»

ADEOfAppearance

 Definition: ADEOfAppearance acts as a hook to define properties within an ADE that are
to be added to an Appearance.

 Subclass of: None

 Stereotype: «DataType»

ADEOfGeoreferencedTexture

 Definition: ADEOfGeoreferencedTexture acts as a hook to define properties within an
ADE that are to be added to a GeoreferencedTexture.

 Subclass of: None

 Stereotype: «DataType»

ADEOfParameterizedTexture

 Definition: ADEOfParameterizedTexture acts as a hook to define properties within an
ADE that are to be added to a ParameterizedTexture.

 Subclass of: None

 Stereotype: «DataType»

183

ADEOfX3DMaterial

 Definition: ADEOfX3DMaterial acts as a hook to define properties within an ADE that are
to be added to an X3DMaterial.

 Subclass of: None

 Stereotype: «DataType»

TexCoordGen

 Definition: TexCoordGen defines texture parameterization using a transformation
matrix.

 Subclass of: None

 Stereotype: «DataType»

Role name Target class and
multiplicity

Definition

crs SC_CRS [0..1] Relates to the coordinate reference system of the
transformation matrix.

Attribute Value type and
multiplicity

Definition

worldToTextu
re

TransformationMa
trix3x4 [1..1]

Specifies the 3x4 transformation matrix that defines the
transformation between world coordinates and texture
coordinates.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

TexCoordList

 Definition: TexCoordList defines texture parameterization using texture coordinates.

 Subclass of: None

 Stereotype: «DataType»

184

Attribute Value type and
multiplicity

Definition

textureCoordi
nates

DoubleList [1..*] Specifies the coordinates of texture used for
parameterization. The texture coordinates are provided
separately for each LinearRing of the surface geometry
object.

ring URI [1..*] Specifies the URIs that point to the LinearRings that are
parameterized using the given texture coordinates.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

9.3.3. Basic Types

Color

 Definition: Color is a list of three double values between 0 and 1 defining an RGB color
value.

 Subclass of: DoubleBetween0and1List

 Stereotype: «BasicType»

 Constraint: lengthOfList (OCL): inv: list→size() = 3

ColorPlusOpacity

 Definition: Color is a list of four double values between 0 and 1 defining an RGBA color
value. Opacity value of 0 means transparent.

 Subclass of: DoubleBetween0and1List

 Stereotype: «BasicType»

 Constraint: lengthOfList (OCL): inv: list→size() = 3 or list→size() = 4

9.3.4. Unions

none

9.3.5. Code Lists

none

9.3.6. Enumerations

185

TextureType

Definition: TextureType enumerates the different texture types.

StereoType: <<Enumeration>>

Literal value Definition

specific Indicates that the texture is specific to a single surface.

typical Indicates that the texture is characteristic of a surface and can be used
repeatedly.

unknown Indicates that the texture type is not known.

WrapMode

Definition: WrapMode enumerates the different fill modes for textures.

StereoType: <<Enumeration>>

Literal value Definition

none Indicates that the texture is applied to the surface "as is". The part of the
surface that is not covered by the texture is shown fully transparent. [cf.
COLLADA]

wrap Indicates that the texture is repeated until the surface is fully covered. [cf.
COLLADA]

mirror Indicates that the texture is repeated and mirrored. [cf. COLLADA]

clamp Indicates that the texture is stretched to the edges of the surface. [cf.
COLLADA]

border Indicates that the texture is applied to the surface "as is". The part of the
surface that is not covered by the texture is filled with the RGBA color that is
specified in the attribute borderColor. [cf. COLLADA]

9.4. CityFurniture

 Description: The CityFurniture module supports representation of city furniture objects.
City furniture objects are immovable objects like lanterns, traffic signs,
advertising columns, benches, or bus stops that can be found in traffic areas,
residential areas, on squares, or in built-up areas.

 Parent Package: CityGML

 Stereotype: «ApplicationSchema»

186

9.4.1. Classes

CityFurniture

 Definition: CityFurniture is an object or piece of equipment installed in the outdoor
environment for various purposes. Examples include street signs, traffic
signals, street lamps, benches, fountains.

 Subclass of: AbstractOccupiedSpace

 Stereotype: «TopLevelFeatureType»

Attribute Value type and
multiplicity

Definition

class CityFurnitureClass
Value [0..1]

Indicates the specific type of the CityFurniture.

function CityFurnitureFunct
ionValue [0..*]

Specifies the intended purposes of the CityFurniture.

usage CityFurnitureUsage
Value [0..*]

Specifies the actual uses of the CityFurniture.

adeOfCityFur
niture

ADEOfCityFurnitur
e [0..*]

Augments the CityFurniture with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

9.4.2. Data Types

ADEOfCityFurniture

 Definition: ADEOfCityFurniture acts as a hook to define properties within an ADE that
are to be added to a CityFurniture.

 Subclass of: None

 Stereotype: «DataType»

9.4.3. Basic Types

none

9.4.4. Unions

none

187

9.4.5. Code Lists

CityFurnitureClassValue

 Definition: CityFurnitureClassValue is a code list used to further classify a CityFurniture.

 Stereotype: «CodeList»

CityFurnitureFunctionValue

 Definition: CityFurnitureFunctionValue is a code list that enumerates the different
purposes of a CityFurniture.

 Stereotype: «CodeList»

CityFurnitureUsageValue

 Definition: CityFurnitureUsageValue is a code list that enumerates the different uses of a
CityFurniture.

 Stereotype: «CodeList»

9.4.6. Enumerations

none

9.5. CityObjectGroup

 Description: The CityObjectGroup module supports grouping of city objects. Arbitrary city
objects may be aggregated in groups according to user-defined criteria. A
group may be further classified by application-specific attributes.

 Parent Package: CityGML

 Stereotype: «ApplicationSchema»

9.5.1. Classes

CityObjectGroup

188

 Definition: A CityObjectGroup represents an application-specific aggregation of city
objects according to some user-defined criteria. Examples for groups are the
buildings in a specific region, the result of a query, or objects put together for
visualization purposes. Each member of a group may be qualified by a role
name, reflecting the role each city object plays in the context of the group.

 Subclass of: AbstractLogicalSpace

 Stereotype: «TopLevelFeatureType»

Role name Target class and
multiplicity

Definition

parent AbstractCityObject
[0..1]

Relates to a city object to which the CityObjectGroup belongs.

groupMember AbstractCityObject
[*]

Relates to the city objects that are part of the
CityObjectGroup.

Attribute Value type and
multiplicity

Definition

class CityObjectGroupCla
ssValue [0..1]

Indicates the specific type of the CityObjectGroup.

function CityObjectGroupFu
nctionValue [0..*]

Specifies the intended purposes of the CityObjectGroup.

usage CityObjectGroupUs
ageValue [0..*]

Specifies the actual usages of the CityObjectGroup.

adeOfCityObje
ctGroup

ADEOfCityObjectGr
oup [0..*]

Augments the CityObjectGroup with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

Role

 Definition: Role qualifies the function of a city object within the CityObjectGroup.

 Subclass of: None

 Stereotype: «ObjectType»

Attribute Value type and
multiplicity

Definition

role CharacterString
[0..1]

Describes the role the city object plays within the
CityObjectGroup.

189

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

9.5.2. Data Types

ADEOfCityObjectGroup

 Definition: ADEOfCityObjectGroup acts as a hook to define properties within an ADE that
are to be added to a CityObjectGroup.

 Subclass of: None

 Stereotype: «DataType»

9.5.3. Basic Types

none

9.5.4. Unions

none

9.5.5. Code Lists

CityObjectGroupClassValue

 Definition: CityObjectGroupClassValue is a code list used to further classify a
CityObjectGroup.

 Stereotype: «CodeList»

CityObjectGroupFunctionValue

 Definition: CityObjectGroupFunctionValue is a code list that enumerates the different
purposes of a CityObjectGroup.

 Stereotype: «CodeList»

CityObjectGroupUsageValue

 Definition: CityObjectGroupUsageValue is a code list that enumerates the different uses
of a CityObjectGroup.

 Stereotype: «CodeList»

190

9.5.6. Enumerations

none

9.6. Dynamizer

 Description: The Dynamizer module supports the injection of timeseries data for individual
attributes of CityGML features. Timeseries data can either be retrieved from
external Sensor APIs (e.g. OGC SensorThings API, OGC Sensor Observation
Services, MQTT, proprietary platforms), external standardized timeseries files
(e.g. OGC TimeseriesML or OGC Observations & Measurements), external
tabulated files (e.g CSV) or can be represented inline as basic time-value pairs.

 Parent Package: CityGML

 Stereotype: «ApplicationSchema»

9.6.1. Classes

AbstractAtomicTimeseries

 Definition: AbstractAtomicTimeseries represents the attributes and relationships that
are common to all kinds of atomic timeseries (GenericTimeseries,
TabulatedFileTimeseries, StandardFileTimeseries). An atomic timeseries
represents time-varying data of a specific data type for a single contiguous
time interval.

 Subclass of: AbstractTimeseries

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

observationPr
operty

CharacterString
[1..1]

Specifies the phenomenon for which the atomic timeseries
provides observation values.

uom CharacterString
[0..1]

Specifies the unit of measurement of the observation values.

adeOfAbstract
AtomicTimese
ries

ADEOfAbstractAto
micTimeseries
[0..*]

Augments AbstractAtomicTimeseries with properties defined
in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

AbstractTimeseries

191

 Definition: AbstractTimeseries is the abstract superclass representing any type of
timeseries data.

 Subclass of: AbstractFeature

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

firstTimestam
p

TM_Position [0..1] Specifies the beginning of the timeseries.

lastTimestam
p

TM_Position [0..1] Specifies the end of the timeseries.

adeOfAbstract
Timeseries

ADEOfAbstractTim
eseries [0..*]

Augments AbstractTimeseries with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

CompositeTimeseries

 Definition: A CompositeTimeseries is a (possibly recursive) aggregation of atomic and
composite timeseries. The components of a composite timeseries must have
non-overlapping time intervals.

 Subclass of: AbstractTimeseries

 Stereotype: «FeatureType»

Role name Target class and
multiplicity

Definition

component TimeseriesCompon
ent [1..*]

Relates to the atomic and composite timeseries that are part
of the CompositeTimeseries. The referenced timeseries are
sequentially ordered.

Attribute Value type and
multiplicity

Definition

adeOfComposi
teTimeseries

ADEOfCompositeTi
meseries [0..*]

Augments the CompositeTimeseries with properties defined
in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

Dynamizer

192

 Definition: A Dynamizer is an object that injects timeseries data for an individual
attribute of the city object in which it is included. The timeseries data
overrides the static value of the referenced city object attribute in order to
represent dynamic (time-dependent) variations of its value.

 Subclass of: AbstractDynamizer

 Stereotype: «FeatureType»

Role name Target class and
multiplicity

Definition

dynamicData AbstractTimeseries
[0..1]

Relates to the timeseries data that is given either inline
within a CityGML dataset or by a link to an external file
containing timeseries data.

sensorConnec
tion

SensorConnection
[0..1]

Relates to the sensor API that delivers timeseries data.

Attribute Value type and
multiplicity

Definition

attributeRef CharacterString
[1..1]

Specifies the attribute of a CityGML feature whose value is
overridden or replaced by the (dynamic) values specified by
the Dynamizer.

startTime TM_Position [0..1] Specifies the beginning of the time span for which the
Dynamizer provides dynamic values.

endTime TM_Position [0..1] Specifies the end of the time span for which the Dynamizer
provides dynamic values.

adeOfDynami
zer

ADEOfDynamizer
[0..*]

Augments the Dynamizer with properties defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

GenericTimeseries

193

 Definition: A GenericTimeseries represents time-varying data in the form of embedded
time-value-pairs of a specific data type for a single contiguous time interval.

 Subclass of: AbstractAtomicTimeseries

 Stereotype: «FeatureType»

 Constraint: dataTypeOfValue (OCL): inv:
if valueType = TimeseriesTypeValue::integer then
 TimeValuePair→forAll(c | c.intValue→size()=1)
else if valueType = TimeseriesTypeValue::double then
 TimeValuePair→forAll(c | c.doubleValue→size()=1)
else if valueType = TimeseriesTypeValue::string then
 TimeValuePair→forAll(c | c.stringValue→size()=1)
else if valueType = TimeseriesTypeValue::geometry then
 TimeValuePair→forAll(c | c.geometryValue→size()=1)
else if valueType = TimeseriesTypeValue::uri then
 TimeValuePair→forAll(c | c.uriValue→size()=1)
else if valueType = TimeseriesTypeValue::bool then
 TimeValuePair→forAll(c | c.boolValue→size()=1)
else if valueType = TimeseriesTypeValue::implicitGeometry then
 TimeValuePair→forAll(c | c.implicitGeometryValue→size()=1)
else TimeValuePair→forAll(c | c.appearanceValue→size()=1)

Role name Target class and
multiplicity

Definition

timeValuePair TimeValuePair
[1..*]

Relates to the time-value-pairs that are part of the
GenericTimeseries.

Attribute Value type and
multiplicity

Definition

valueType TimeseriesTypeVal
ue [1..1]

Indicates the specific type of all time-value-pairs that are
part of the GenericTimeseries.

adeOfGeneric
Timeseries

ADEOfGenericTime
series [0..*]

Augments the GenericTimeseries with properties defined in
an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

StandardFileTimeseries

194

 Definition: A StandardFileTimeseries represents time-varying data for a single
contiguous time interval. The data is provided in an external file referenced
in the StandardFileTimeseries. The data within the external file is encoded
according to a dedicated format for the representation of timeseries data
such as using the OGC TimeseriesML or OGC Observations & Measurements
Standard. The data type of the data has to be specified within the external
file.

 Subclass of: AbstractAtomicTimeseries

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

fileLocation URI [1..1] Specifies the URI that points to the external timeseries file.

fileType StandardFileTypeV
alue [1..1]

Specifies the format used to represent the timeseries data.

mimeType MimeTypeValue
[0..1]

Specifies the MIME type of the external timeseries file.

adeOfStandar
dFileTimeseri
es

ADEOfStandardFile
Timeseries [0..*]

Augments the StandardFileTimeseries with properties
defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

TabulatedFileTimeseries

 Definition: A TabulatedFileTimeseries represents time-varying data of a specific data
type for a single contiguous time interval. The data is provided in an external
file referenced in the TabulatedFileTimeseries. The file contains table
structured data using an appropriate file format such as comma-separated
values (CSV), Microsoft Excel (XLSX) or Google Spreadsheet. The timestamps
and the values are given in specific columns of the table. Each row represents
a single time-value-pair. A subset of rows can be selected using the idColumn
and idValue attributes.

 Subclass of: AbstractAtomicTimeseries

 Stereotype: «FeatureType»

 Constraint: columnNumberOrColumnName (OCL): inv:
(timeColumnNo→notEmpty() or timeColumnName→notEmpty()) and
(valueColumnNo→notEmpty() or valueColumnName→notEmpty()) and
(idValue→notEmpty() implies idColumnNo→notEmpty() or +
idColumnName→notEmpty())

195

Attribute Value type and
multiplicity

Definition

fileLocation URI [1..1] Specifies the URI that points to the external timeseries file.

fileType TabulatedFileType
Value [1..1]

Specifies the format used to represent the timeseries data.

mimeType MimeTypeValue
[0..1]

Specifies the MIME type of the external timeseries file.

valueType TimeseriesTypeVal
ue [1..1]

Indicates the specific type of the timeseries data.

numberOfHea
derLines

Integer [0..1] Indicates the number of lines at the beginning of the
tabulated file that represent headers.

fieldSeparator CharacterString
[1..1]

Indicates which symbol is used to separate the individual
values in the tabulated file.

decimalSymb
ol

Character [0..1] Indicates which symbol is used to separate the integer part
from the fractional part of a decimal number.

idColumnNo Integer [0..1] Specifies the number of the column that stores the identifier
of the time-value-pair.

idColumnNam
e

CharacterString
[0..1]

Specifies the name of the column that stores the identifier of
the time-value-pair.

idValue CharacterString
[0..1]

Specifies the value of the identifier for which the time-value-
pairs are to be selected.

timeColumnN
o

Integer [0..1] Specifies the number of the column that stores the
timestamp of the time-value-pair.

timeColumnN
ame

CharacterString
[0..1]

Specifies the name of the column that stores the timestamp
of the time-value-pair.

valueColumn
No

Integer [0..1] Specifies the number of the column that stores the value of
the time-value-pair.

valueColumn
Name

CharacterString
[0..1]

Specifies the name of the column that stores the value of the
time-value-pair.

adeOfTabulat
edFileTimeser
ies

ADEOfTabulatedFil
eTimeseries [0..*]

Augments the TabulatedFileTimeseries with properties
defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

9.6.2. Data Types

196

ADEOfAbstractAtomicTimeseries

 Definition: ADEOfAbstractAtomicTimeseries acts as a hook to define properties within an
ADE that are to be added to AbstractAtomicTimeseries.

 Subclass of: None

 Stereotype: «DataType»

ADEOfAbstractTimeseries

 Definition: ADEOfAbstractTimeseries acts as a hook to define properties within an ADE
that are to be added to AbstractTimeseries.

 Subclass of: None

 Stereotype: «DataType»

ADEOfCompositeTimeseries

 Definition: ADEOfCompositeTimeseries acts as a hook to define properties within an ADE
that are to be added to a CompositeTimeseries.

 Subclass of: None

 Stereotype: «DataType»

ADEOfDynamizer

 Definition: ADEOfDynamizer acts as a hook to define properties within an ADE that are
to be added to a Dynamizer.

 Subclass of: None

 Stereotype: «DataType»

ADEOfGenericTimeseries

 Definition: ADEOfGenericTimeseries acts as a hook to define properties within an ADE
that are to be added to a GenericTimeseries.

 Subclass of: None

 Stereotype: «DataType»

197

ADEOfStandardFileTimeseries

 Definition: ADEOfStandardFileTimeseries acts as a hook to define properties within an
ADE that are to be added to a StandardFileTimeseries.

 Subclass of: None

 Stereotype: «DataType»

ADEOfTabulatedFileTimeseries

 Definition: ADEOfTabulatedFileTimeseries acts as a hook to define properties within an
ADE that are to be added to a TabulatedFileTimeseries.

 Subclass of: None

 Stereotype: «DataType»

SensorConnection

 Definition: A SensorConnection provides all details that are required to retrieve a
specific datastream from an external sensor web service. This data type
comprises the service type (e.g. OGC SensorThings API, OGC Sensor
Observation Services, MQTT, proprietary platforms), the URL of the sensor
service, the identifier for the sensor or thing, and its observed property as
well as information about the required authentication method.

 Subclass of: None

 Stereotype: «DataType»

Role name Target class and
multiplicity

Definition

sensorLocatio
n

AbstractCityObject
[0..1]

Relates the sensor to the city object where it is located.

198

Attribute Value type and
multiplicity

Definition

connectionTy
pe

SensorConnectionT
ypeValue [1..1]

Indicates the type of Sensor API to which the
SensorConnection refers.

observationPr
operty

CharacterString
[1..1]

Specifies the phenomenon for which the SensorConnection
provides observations.

uom CharacterString
[0..1]

Specifies the unit of measurement of the observations.

sensorID CharacterString
[0..1]

Specifies the unique identifier of the sensor from which the
SensorConnection retrieves observations.

sensorName CharacterString
[0..1]

Specifies the name of the sensor from which the
SensorConnection retrieves observations.

observationID CharacterString
[0..1]

Specifies the unique identifier of the observation that is
retrieved by the SensorConnection.

datastreamID CharacterString
[0..1]

Specifies the datastream that is retrieved by the
SensorConnection.

baseURL URI [0..1] Specifies the base URL of the Sensor API request.

authType AuthenticationTyp
eValue [0..1]

Specifies the type of authentication required to be able to
access the Sensor API.

mqttServer CharacterString
[0..1]

Specifies the name of the MQTT Server. This attribute is
relevant when the MQTT Protocol is used to connect to a
Sensor API.

mqttTopic CharacterString
[0..1]

Names the specific datastream that is retrieved by the
SensorConnection. This attribute is relevant when the MQTT
Protocol is used to connect to a Sensor API.

linkToObserv
ation

CharacterString
[0..1]

Specifies the complete URL to the observation request.

linkToSensor
Description

CharacterString
[0..1]

Specifies the complete URL to the sensor description request.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

TimeseriesComponent

 Definition: TimeseriesComponent represents an element of a CompositeTimeseries.

 Subclass of: None

 Stereotype: «DataType»

199

Role name Target class and
multiplicity

Definition

timeseries AbstractTimeseries
[1..1]

Relates a timeseries to the TimeseriesComponent.

Attribute Value type and
multiplicity

Definition

repetitions Integer [1..1] Specifies how often the timeseries that is referenced by the
TimeseriesComponent should be iterated.

additionalGap TM_Duration [0..1] Specifies how much extra time is added after all repetitions
as an additional gap.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

TimeValuePair

 Definition: A TimeValuePair represents a value that is valid for a given timepoint. For
each TimeValuePair, only one of the value properties can be used mutually
exclusive. Which value property has to be provided depends on the selected
value type in the GenericTimeSeries feature, in which the TimeValuePair is
included.

 Subclass of: None

 Stereotype: «DataType»

 Constraint: singleValue (OCL): inv:
intValue→size() + doubleValue→size() + stringValue→size() +
geometryValue→size() + uriValue→size() + boolValue→size() +
implicitGeometryValue→size() + appearanceValue→size() = 1

200

Attribute Value type and
multiplicity

Definition

timestamp TM_Position [1..1] Specifies the timepoint at which the value of the
TimeValuePair is valid.

intValue Integer [0..1] Specifies the "Integer" value of the TimeValuePair.

doubleValue Real [0..1] Specifies the "Double" value of the TimeValuePair.

stringValue CharacterString
[0..1]

Specifies the "String" value of the TimeValuePair.

geometryValu
e

GM_Object [0..1] Specifies the geometry value of the TimeValuePair.

uriValue URI [0..1] Specifies the "URI" value of the TimeValuePair.

boolValue Boolean [0..1] Specifies the "Boolean" value of the TimeValuePair.

implicitGeom
etryValue

ImplicitGeometry
[0..1]

Specifies the "ImplicitGeometry" value of the TimeValuePair.

appearanceVa
lue

AbstractAppearanc
e [0..1]

Specifies the "Appearance" value of the TimeValuePair.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

9.6.3. Basic Types

none

9.6.4. Unions

none

9.6.5. Code Lists

AuthenticationTypeValue

 Definition: AuthenticationTypeValue is a code list used to specify the authentication
method to be used to access the referenced sensor service. Each value
provides enough information such that a software application could
determine the required access credentials.

 Stereotype: «CodeList»

SensorConnectionTypeValue

201

 Definition: SensorConnectionTypeValue is a code list used to specify the type of the
referenced sensor service. Each value provides enough information such that
a software application would be able to identify the API type and version.

 Stereotype: «CodeList»

StandardFileTypeValue

 Definition: StandardFileTypeValue is a code list used to specify the type of the referenced
external timeseries data file. Each value provides information about the
standard and version.

 Stereotype: «CodeList»

TabulatedFileTypeValue

 Definition: TabulatedFileTypeValue is a code list used to specify the data format of the
referenced external tabulated data file.

 Stereotype: «CodeList»

9.6.6. Enumerations

TimeseriesTypeValue

Definition: TimeseriesTypeValue enumerates the possible value types for
GenericTimeseries and TimeValuePair.

StereoType: <<Enumeration>>

Literal value Definition

int Indicates that the values of the GenericTimeseries are of type "Integer".

double Indicates that the values of the GenericTimeseries are of type "Double".

string Indicates that the values of the GenericTimeseries are of type "String".

geometry Indicates that the values of the GenericTimeseries are geometries.

uri Indicates that the values of the GenericTimeseries are of type "URI".

bool Indicates that the values of the GenericTimeseries are of type "Boolean".

implicitGeometry Indicates that the values of the GenericTimeseries are of type
"ImplicitGeometry".

appearance Indicates that the values of the GenericTimeseries are of type "Appearance".

202

9.7. Generics

 Description: The Generics module supports application-specific extensions to the CityGML
data model. These extensions may be used to model and exchange additional
attributes and features not covered by the predefined thematic classes of
CityGML. Generic extensions shall only be used if appropriate thematic classes
or attributes are not provided by any other CityGML module.

 Parent Package: CityGML

 Stereotype: «ApplicationSchema»

9.7.1. Classes

GenericLogicalSpace

 Definition: A GenericLogicalSpace is a space that is not represented by any explicitly
modelled AbstractLogicalSpace subclass within CityGML.

 Subclass of: AbstractLogicalSpace

 Stereotype: «TopLevelFeatureType»

Attribute Value type and
multiplicity

Definition

class GenericLogicalSpac
eClassValue [0..1]

Indicates the specific type of the GenericLogicalSpace.

function GenericLogicalSpac
eFunctionValue
[0..*]

Specifies the intended purposes of the GenericLogicalSpace.

usage GenericLogicalSpac
eUsageValue [0..*]

Specifies the actual uses of the GenericLogicalSpace.

adeOfGeneric
LogicalSpace

ADEOfGenericLogi
calSpace [0..*]

Augments the GenericLogicalSpace with properties defined
in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

GenericOccupiedSpace

 Definition: A GenericOccupiedSpace is a space that is not represented by any explicitly
modelled AbstractOccupiedSpace subclass within CityGML.

 Subclass of: AbstractOccupiedSpace

 Stereotype: «TopLevelFeatureType»

203

Attribute Value type and
multiplicity

Definition

class GenericOccupiedSp
aceClassValue [0..1]

Indicates the specific type of the GenericOccupiedSpace.

function GenericOccupiedSp
aceFunctionValue
[0..*]

Specifies the intended purposes of the
GenericOccupiedSpace.

usage GenericOccupiedSp
aceUsageValue
[0..*]

Specifies the actual uses of the GenericOccupiedSpace.

adeOfGeneric
OccupiedSpac
e

ADEOfGenericOccu
piedSpace [0..*]

Augments the GenericOccupiedSpace with properties
defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

GenericThematicSurface

 Definition: A GenericThematicSurface is a surface that is not represented by any
explicitly modelled AbstractThematicSurface subclass within CityGML.

 Subclass of: AbstractThematicSurface

 Stereotype: «TopLevelFeatureType»

Attribute Value type and
multiplicity

Definition

class GenericThematicSu
rfaceClassValue
[0..1]

Indicates the specific type of the GenericThematicSurface.

function GenericThematicSu
rfaceFunctionValue
[0..*]

Specifies the intended purposes of the
GenericThematicSurface.

usage GenericThematicSu
rfaceUsageValue
[0..*]

Specifies the actual uses of the GenericThematicSurface.

adeOfGeneric
ThematicSurf
ace

ADEOfGenericThe
maticSurface [0..*]

Augments the GenericThematicSurface with properties
defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

204

GenericUnoccupiedSpace

 Definition: A GenericUnoccupiedSpace is a space that is not represented by any explicitly
modelled AbstractUnoccupiedSpace subclass within CityGML.

 Subclass of: AbstractUnoccupiedSpace

 Stereotype: «TopLevelFeatureType»

Attribute Value type and
multiplicity

Definition

class GenericUnoccupied
SpaceClassValue
[0..1]

Indicates the specific type of the GenericUnoccupiedSpace.

function GenericUnoccupied
SpaceFunctionValu
e [0..*]

Specifies the intended purposes of the
GenericUnoccupiedSpace.

usage GenericUnoccupied
SpaceUsageValue
[0..*]

Specifies the actual uses of the GenericUnoccupiedSpace.

adeOfGeneric
UnoccupiedSp
ace

ADEOfGenericUnoc
cupiedSpace [0..*]

Augments the GenericUnoccupiedSpace with properties
defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

9.7.2. Data Types

ADEOfGenericLogicalSpace

 Definition: ADEOfGenericLogicalSpace acts as a hook to define properties within an ADE
that are to be added to a GenericLogicalSpace.

 Subclass of: None

 Stereotype: «DataType»

ADEOfGenericOccupiedSpace

 Definition: ADEOfGenericOccupiedSpace acts as a hook to define properties within an
ADE that are to be added to a GenericOccupiedSpace.

 Subclass of: None

 Stereotype: «DataType»

205

ADEOfGenericThematicSurface

 Definition: ADEOfGenericThematicSurface acts as a hook to define properties within an
ADE that are to be added to a GenericThematicSurface.

 Subclass of: None

 Stereotype: «DataType»

ADEOfGenericUnoccupiedSpace

 Definition: ADEOfGenericUnoccupiedSpace acts as a hook to define properties within an
ADE that are to be added to a GenericUnoccupiedSpace.

 Subclass of: None

 Stereotype: «DataType»

CodeAttribute

 Definition: CodeAttribute is a data type used to define generic attributes of type "Code".

 Subclass of: None

 Stereotype: «DataType»

Attribute Value type and
multiplicity

Definition

name CharacterString
[1..1]

Specifies the name of the CodeAttribute.

value Code [1..1] Specifies the "Code" value.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

DateAttribute

 Definition: DateAttribute is a data type used to define generic attributes of type "Date".

 Subclass of: None

 Stereotype: «DataType»

206

Attribute Value type and
multiplicity

Definition

name CharacterString
[1..1]

Specifies the name of the DateAttribute.

value Date [1..1] Specifies the "Date" value.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

DoubleAttribute

 Definition: DoubleAttribute is a data type used to define generic attributes of type
"Double".

 Subclass of: None

 Stereotype: «DataType»

Attribute Value type and
multiplicity

Definition

name CharacterString
[1..1]

Specifies the name of the DoubleAttribute.

value Real [1..1] Specifies the "Double" value.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

GenericAttributeSet

 Definition: A GenericAttributeSet is a named collection of generic attributes.

 Subclass of: None

 Stereotype: «DataType»

Role name Target class and
multiplicity

Definition

genericAttrib
ute

AbstractGenericAtt
ribute [1..*]

Relates to the generic attributes that are part of the
GenericAttributeSet.

207

Attribute Value type and
multiplicity

Definition

name CharacterString
[1..1]

Specifies the name of the GenericAttributeSet.

codeSpace URI [0..1] Associates the GenericAttributeSet with an authority that
maintains the collection of generic attributes.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

IntAttribute

 Definition: IntAttribute is a data type used to define generic attributes of type "Integer".

 Subclass of: None

 Stereotype: «DataType»

Attribute Value type and
multiplicity

Definition

name CharacterString
[1..1]

Specifies the name of the IntAttribute.

value Integer [1..1] Specifies the "Integer" value.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

MeasureAttribute

 Definition: MeasureAttribute is a data type used to define generic attributes of type
"Measure".

 Subclass of: None

 Stereotype: «DataType»

Attribute Value type and
multiplicity

Definition

name CharacterString
[1..1]

Specifies the name of the MeasureAttribute.

value Measure [1..1] Specifies the value of the MeasureAttribute. The value is of
type "Measure", which can additionally provide the units of
measure. [cf. ISO 19103]

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

208

StringAttribute

 Definition: StringAttribute is a data type used to define generic attributes of type
"String".

 Subclass of: None

 Stereotype: «DataType»

Attribute Value type and
multiplicity

Definition

name CharacterString
[1..1]

Specifies the name of the StringAttribute.

value CharacterString
[1..1]

Specifies the "String" value.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

UriAttribute

 Definition: UriAttribute is a data type used to define generic attributes of type "URI".

 Subclass of: None

 Stereotype: «DataType»

Attribute Value type and
multiplicity

Definition

name CharacterString
[1..1]

Specifies the name of the UriAttribute.

value URI [1..1] Specifies the "URI" value.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

9.7.3. Basic Types

none

9.7.4. Unions

none

9.7.5. Code Lists

209

GenericLogicalSpaceClassValue

 Definition: GenericLogicalSpaceClassValue is a code list used to further classify a
GenericLogicalSpace.

 Stereotype: «CodeList»

GenericLogicalSpaceFunctionValue

 Definition: GenericLogicalSpaceFunctionValue is a code list that enumerates the
different purposes of a GenericLogicalSpace.

 Stereotype: «CodeList»

GenericLogicalSpaceUsageValue

 Definition: GenericLogicalSpaceUsageValue is a code list that enumerates the different
uses of a GenericLogicalSpace.

 Stereotype: «CodeList»

GenericOccupiedSpaceClassValue

 Definition: GenericOccupiedSpaceClassValue is a code list used to further classify a
GenericOccupiedSpace.

 Stereotype: «CodeList»

GenericOccupiedSpaceFunctionValue

 Definition: GenericOccupiedSpaceFunctionValue is a code list that enumerates the
different purposes of a GenericOccupiedSpace.

 Stereotype: «CodeList»

GenericOccupiedSpaceUsageValue

 Definition: GenericOccupiedSpaceUsageValue is a code list that enumerates the different
uses of a GenericOccupiedSpace.

 Stereotype: «CodeList»

210

GenericThematicSurfaceClassValue

 Definition: GenericThematicSurfaceClassValue is a code list used to further classify a
GenericThematicSurface.

 Stereotype: «CodeList»

GenericThematicSurfaceFunctionValue

 Definition: GenericThematicSurfaceFunctionValue is a code list that enumerates the
different purposes of a GenericThematicSurface.

 Stereotype: «CodeList»

GenericThematicSurfaceUsageValue

 Definition: GenericThematicSurfaceUsageValue is a code list that enumerates the
different uses of a GenericThematicSurface.

 Stereotype: «CodeList»

GenericUnoccupiedSpaceClassValue

 Definition: GenericUnoccupiedSpaceClassValue is a code list used to further classify a
GenericUnoccupiedSpace.

 Stereotype: «CodeList»

GenericUnoccupiedSpaceFunctionValue

 Definition: GenericUnoccupiedSpaceFunctionValue is a code list that enumerates the
different purposes of a GenericUnoccupiedSpace.

 Stereotype: «CodeList»

GenericUnoccupiedSpaceUsageValue

 Definition: GenericUnoccupiedSpaceUsageValue is a code list that enumerates the
different uses of a GenericUnoccupiedSpace.

 Stereotype: «CodeList»

211

9.7.6. Enumerations

none

9.8. LandUse

 Description: The LandUse module supports representation of areas of the earth’s surface
dedicated to a specific land use.

 Parent Package: CityGML

 Stereotype: «ApplicationSchema»

9.8.1. Classes

LandUse

 Definition: A LandUse object is an area of the earth’s surface dedicated to a specific land
use or having a specific land cover with or without vegetation, such as sand,
rock, mud flats, forest, grasslands, or wetlands.

 Subclass of: AbstractThematicSurface

 Stereotype: «TopLevelFeatureType»

Attribute Value type and
multiplicity

Definition

class LandUseClassValue
[0..1]

Indicates the specific type of the LandUse.

function LandUseFunctionV
alue [0..*]

Specifies the intended purposes of the LandUse.

usage LandUseUsageValu
e [0..*]

Specifies the actual uses of the LandUse.

adeOfLandUs
e

ADEOfLandUse
[0..*]

Augments the LandUse with properties defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

9.8.2. Data Types

212

ADEOfLandUse

 Definition: ADEOfLandUse acts as a hook to define properties within an ADE that are to
be added to a LandUse.

 Subclass of: None

 Stereotype: «DataType»

9.8.3. Basic Types

none

9.8.4. Unions

none

9.8.5. Code Lists

LandUseClassValue

 Definition: LandUseClassValue is a code list used to further classify a LandUse.

 Stereotype: «CodeList»

LandUseFunctionValue

 Definition: LandUseFunctionValue is a code list that enumerates the different purposes
of a LandUse.

 Stereotype: «CodeList»

LandUseUsageValue

 Definition: LandUseUsageValue is a code list that enumerates the different uses of a
LandUse.

 Stereotype: «CodeList»

9.8.6. Enumerations

none

213

9.9. PointCloud

 Description: The PointCloud module supports representation of CityGML features by a
collection of points.

 Parent Package: CityGML

 Stereotype: «ApplicationSchema»

9.9.1. Classes

PointCloud

 Definition: A PointCloud is an unordered collection of points that is a sampling of the
geometry of a space or space boundary.

 Subclass of: AbstractPointCloud

 Stereotype: «FeatureType»

 Constraint: inlineOrExternalPointCloud (OCL): inv: (points→notEmpty() and
mimeType→isEmpty() and pointFile→isEmpty() and
pointFileSrsName→isEmpty()) xor (points→isEmpty() and
mimeType→notEmpty() and pointFile→notEmpty())

Role name Target class and
multiplicity

Definition

points GM_MultiPoint
[0..1]

Relates to the 3D MultiPoint geometry of the PointCloud
stored inline with the city model.

Attribute Value type and
multiplicity

Definition

mimeType MimeTypeValue
[0..1]

Specifies the MIME type of the external point cloud file.

pointFile URI [0..1] Specifies the URI that points to the external point cloud file.

pointFileSrsN
ame

CharacterString
[0..1]

Indicates the coordinate reference system used by the
external point cloud file.

adeOfPointClo
ud

ADEOfPointCloud
[0..*]

Augments the PointCloud with properties defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

9.9.2. Data Types

214

ADEOfPointCloud

 Definition: ADEOfPointCloud acts as a hook to define properties within an ADE that are
to be added to a PointCloud.

 Subclass of: None

 Stereotype: «DataType»

9.9.3. Basic Types

none

9.9.4. Unions

none

9.9.5. Code Lists

none

9.9.6. Enumerations

none

9.10. Relief

 Description: The Relief module supports representation of the terrain. CityGML supports
terrain representations at different levels of detail, reflecting different
accuracies or resolutions. Terrain may be specified as a regular raster or grid,
as a TIN, by break lines, and/or by mass points.

 Parent Package: CityGML

 Stereotype: «ApplicationSchema»

9.10.1. Classes

AbstractReliefComponent

 Definition: An AbstractReliefComponent represents an element of the terrain surface -
either a TIN, a raster or grid, mass points or break lines.

 Subclass of: AbstractSpaceBoundary

 Stereotype: «FeatureType»

 Constraint: polygonGeometry (OCL): inv: extent.patch→size()=1 and
extent.patch→forAll(oclIsKindOf(GM_Polygon))

215

Role name Target class and
multiplicity

Definition

extent GM_Surface [0..1] Indicates the geometrical extent of the terrain component.
The geometrical extent is provided as a 2D Surface geometry.

Attribute Value type and
multiplicity

Definition

lod IntegerBetween0an
d3 [1..1]

Indicates the Level of Detail of the terrain component.

adeOfAbstract
ReliefCompon
ent

ADEOfAbstractReli
efComponent [0..*]

Augments AbstractReliefComponent with properties defined
in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

BreaklineRelief

 Definition: A BreaklineRelief represents a terrain component with 3D lines. These lines
denote break lines or ridge/valley lines.

 Subclass of: AbstractReliefComponent

 Stereotype: «FeatureType»

Role name Target class and
multiplicity

Definition

breaklines GM_MultiCurve
[0..1]

Relates to the 3D MultiCurve geometry of the
MassPointRelief. This association role is used to represent
break lines.

ridgeOrValley
Lines

GM_MultiCurve
[0..1]

Relates to the 3D MultiCurve geometry of the
MassPointRelief. This association role is used to represent
ridge or valley lines.

Attribute Value type and
multiplicity

Definition

adeOfBreaklin
eRelief

ADEOfBreaklineRel
ief [0..*]

Augments the BreaklineRelief with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

MassPointRelief

216

 Definition: A MassPointRelief represents a terrain component as a collection of 3D
points.

 Subclass of: AbstractReliefComponent

 Stereotype: «FeatureType»

Role name Target class and
multiplicity

Definition

pointCloud AbstractPointCloud
[0..1]

Relates to the 3D PointCloud of the MassPointRelief.

reliefPoints GM_MultiPoint
[0..1]

Relates to the 3D MultiPoint geometry of the MassPointRelief.

Attribute Value type and
multiplicity

Definition

adeOfMassPoi
ntRelief

ADEOfMassPointRe
lief [0..*]

Augments the MassPointRelief with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

RasterRelief

 Definition: A RasterRelief represents a terrain component as a regular raster or grid.

 Subclass of: AbstractReliefComponent

 Stereotype: «FeatureType»

Role name Target class and
multiplicity

Definition

grid CV_DiscreteGridPoi
ntCoverage [1]

Relates to the DiscreteGridPointCoverage of the RasterRelief.

Attribute Value type and
multiplicity

Definition

adeOfRasterR
elief

ADEOfRasterRelief
[0..*]

Augments the RasterRelief with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

ReliefFeature

217

 Definition: A ReliefFeature is a collection of terrain components representing the Earth’s
surface, also known as the Digital Terrain Model.

 Subclass of: AbstractSpaceBoundary

 Stereotype: «TopLevelFeatureType»

Role name Target class and
multiplicity

Definition

reliefCompon
ent

AbstractReliefCom
ponent [1..*]

Relates to the terrain components that are part of the
ReliefFeature.

Attribute Value type and
multiplicity

Definition

lod IntegerBetween0an
d3 [1..1]

Indicates the Level of Detail of the ReliefFeature.

adeOfReliefFe
ature

ADEOfReliefFeatur
e [0..*]

Augments the ReliefFeature with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

TINRelief

 Definition: A TINRelief represents a terrain component as a triangulated irregular
network.

 Subclass of: AbstractReliefComponent

 Stereotype: «FeatureType»

Role name Target class and
multiplicity

Definition

tin GM_TriangulatedS
urface [1]

Relates to the triangulated surface of the TINRelief.

Attribute Value type and
multiplicity

Definition

adeOfTINRelie
f

ADEOfTINRelief
[0..*]

Augments the TINRelief with properties defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

218

9.10.2. Data Types

ADEOfAbstractReliefComponent

 Definition: ADEOfAbstractReliefComponent acts as a hook to define properties within an
ADE that are to be added to AbstractReliefComponent.

 Subclass of: None

 Stereotype: «DataType»

ADEOfBreaklineRelief

 Definition: ADEOfBreaklineRelief acts as a hook to define properties within an ADE that
are to be added to a BreaklineRelief.

 Subclass of: None

 Stereotype: «DataType»

ADEOfMassPointRelief

 Definition: ADEOfMassPointRelief acts as a hook to define properties within an ADE that
are to be added to a MassPointRelief.

 Subclass of: None

 Stereotype: «DataType»

ADEOfRasterRelief

 Definition: ADEOfRasterRelief acts as a hook to define properties within an ADE that are
to be added to a RasterRelief.

 Subclass of: None

 Stereotype: «DataType»

ADEOfReliefFeature

 Definition: ADEOfReliefFeature acts as a hook to define properties within an ADE that
are to be added to a ReliefFeature.

 Subclass of: None

 Stereotype: «DataType»

219

ADEOfTINRelief

 Definition: ADEOfTINRelief acts as a hook to define properties within an ADE that are to
be added to a TINRelief.

 Subclass of: None

 Stereotype: «DataType»

9.10.3. Basic Types

none

9.10.4. Unions

none

9.10.5. Code Lists

none

9.10.6. Enumerations

none

9.11. Transportation

 Description: The Transportation module supports representation of the transportation
infrastructure. Transportation features include roads, tracks, waterways,
railways, and squares. Transportation features may be represented as a
network and/or as a collection of spaces or surface elements embedded in a
three-dimensional space.

 Parent Package: CityGML

 Stereotype: «ApplicationSchema»

9.11.1. Classes

AbstractTransportationSpace

 Definition: AbstractTransportationSpace is the abstract superclass of transportation
objects such as Roads, Tracks, Railways, Waterways or Squares.

 Subclass of: AbstractUnoccupiedSpace

 Stereotype: «FeatureType»

220

Role name Target class and
multiplicity

Definition

marking Marking [*] Relates to the markings that are part of the transportation
space.

trafficSpace TrafficSpace [*] Relates to the traffic spaces that are part of the
transportation space.

auxiliaryTraff
icSpace

AuxiliaryTrafficSpa
ce [*]

Relates to the auxiliary traffic spaces that are part of the
transportation space.

hole Hole [*] Relates to the holes that are part of the transportation space.

Attribute Value type and
multiplicity

Definition

trafficDirectio
n

TrafficDirectionVal
ue [0..1]

Indicates the direction of traffic flow relative to the
corresponding linear geometry representation.

occupancy Occupancy [0..*] Provides information on the residency of persons, vehicles,
or other moving features in the transportation space.

adeOfAbstract
Transportatio
nSpace

ADEOfAbstractTra
nsportationSpace
[0..*]

Augments AbstractTransportationSpace with properties
defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

AuxiliaryTrafficArea

 Definition: An AuxiliaryTrafficArea is the ground surface of an AuxiliaryTrafficSpace.

 Subclass of: AbstractThematicSurface

 Stereotype: «FeatureType»

221

Attribute Value type and
multiplicity

Definition

class AuxiliaryTrafficAre
aClassValue [0..1]

Indicates the specific type of the AuxiliaryTrafficArea.

function AuxiliaryTrafficAre
aFunctionValue
[0..*]

Specifies the intended purposes of the AuxiliaryTrafficArea.

usage AuxiliaryTrafficAre
aUsageValue [0..*]

Specifies the actual uses of the AuxiliaryTrafficArea.

surfaceMateri
al

SurfaceMaterialVal
ue [0..1]

Specifies the type of pavement of the AuxiliaryTrafficArea.

adeOfAuxiliar
yTrafficArea

ADEOfAuxiliaryTra
fficArea [0..*]

Augments the AuxiliaryTrafficArea with properties defined
in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

AuxiliaryTrafficSpace

 Definition: An AuxiliaryTrafficSpace is a space within the transportation space not
intended for traffic purposes.

 Subclass of: AbstractUnoccupiedSpace

 Stereotype: «FeatureType»

Role name Target class and
multiplicity

Definition

boundary AuxiliaryTrafficAre
a [*]

Relates to the auxiliary traffic areas that bound the
AuxiliaryTrafficSpace. This relation is inherited from the
Core module.

222

Attribute Value type and
multiplicity

Definition

class AuxiliaryTrafficSpa
ceClassValue [0..1]

Indicates the specific type of the AuxiliaryTrafficSpace.

function AuxiliaryTrafficSpa
ceFunctionValue
[0..*]

Specifies the intended purposes of the AuxiliaryTrafficSpace.

usage AuxiliaryTrafficSpa
ceUsageValue [0..*]

Specifies the actual uses of the AuxiliaryTrafficSpace.

granularity GranularityValue
[1..1]

Defines whether auxiliary traffic spaces are represented by
individual ways or by individual lanes, depending on the
desired level of spatial and semantic decomposition.

adeOfAuxiliar
yTrafficSpace

ADEOfAuxiliaryTra
fficSpace [0..*]

Augments the AuxiliaryTrafficSpace with properties defined
in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

ClearanceSpace

 Definition: A ClearanceSpace represents the actual free space above a TrafficArea within
which a mobile object can move without contacting an obstruction.

 Subclass of: AbstractUnoccupiedSpace

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

class ClearanceSpaceCla
ssValue [0..*]

Indicates the specific type of the ClearanceSpace.

adeOfClearan
ceSpace

ADEOfClearanceSp
ace [0..*]

Augments the ClearanceSpace with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

Hole

223

 Definition: A Hole is an opening in the surface of a Road, Track or Square such as road
damages, manholes or drains. Holes can span multiple transportation objects.

 Subclass of: AbstractUnoccupiedSpace

 Stereotype: «FeatureType»

Role name Target class and
multiplicity

Definition

boundary AbstractThematicS
urface [*]

Relates to the surfaces that bound the Hole. This relation is
inherited from the Core module.

Attribute Value type and
multiplicity

Definition

class HoleClassValue
[0..1]

Indicates the specific type of the Hole.

adeOfHole ADEOfHole [0..*] Augments the Hole with properties defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

HoleSurface

 Definition: A HoleSurface is a representation of the ground surface of a hole.

 Subclass of: AbstractThematicSurface

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

adeOfHoleSur
face

ADEOfHoleSurface
[0..*]

Augments the HoleSurface with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

Intersection

 Definition: An Intersection is a transportation space that is a shared segment of multiple
Road, Track, Railway, or Waterway objects (e.g. a crossing of two roads or a
level crossing of a road and a railway).

 Subclass of: AbstractTransportationSpace

 Stereotype: «FeatureType»

224

Attribute Value type and
multiplicity

Definition

class IntersectionClassVa
lue [0..1]

Indicates the specific type of the Intersection.

adeOfIntersec
tion

ADEOfIntersection
[0..*]

Augments the Intersection with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

Marking

 Definition: A Marking is a visible pattern on a transportation area relevant to the
structuring or restriction of traffic. Examples are road markings and
markings related to railway or waterway traffic.

 Subclass of: AbstractThematicSurface

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

class MarkingClassValue
[0..1]

Indicates the specific type of the Marking.

adeOfMarking ADEOfMarking
[0..*]

Augments the Marking with properties defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

Railway

 Definition: A Railway is a transportation space used by wheeled vehicles on rails.

 Subclass of: AbstractTransportationSpace

 Stereotype: «TopLevelFeatureType»

Role name Target class and
multiplicity

Definition

intersection Intersection [*] Relates to the intersections that are part of the Railway.

section Section [*] Relates to the sections that are part of the Railway.

225

Attribute Value type and
multiplicity

Definition

class RailwayClassValue
[0..1]

Indicates the specific type of the Railway.

function RailwayFunctionVa
lue [0..*]

Specifies the intended purposes of the Railway.

usage RailwayUsageValue
[0..*]

Specifies the actual uses of the Railway.

adeOfRailway ADEOfRailway
[0..*]

Augments the Railway with properties defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

Road

 Definition: A Road is a transportation space used by vehicles, bicycles and/or
pedestrians.

 Subclass of: AbstractTransportationSpace

 Stereotype: «TopLevelFeatureType»

Role name Target class and
multiplicity

Definition

intersection Intersection [*] Relates to the intersections that are part of the Road.

section Section [*] Relates to the sections that are part of the Road.

Attribute Value type and
multiplicity

Definition

class RoadClassValue
[0..1]

Indicates the specific type of the Road.

function RoadFunctionValue
[0..*]

Specifies the intended purposes of the Road.

usage RoadUsageValue
[0..*]

Specifies the actual uses of the Road.

adeOfRoad ADEOfRoad [0..*] Augments the Road with properties defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

Section

226

 Definition: A Section is a transportation space that is a segment of a Road, Railway, Track,
or Waterway.

 Subclass of: AbstractTransportationSpace

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

class SectionClassValue
[0..1]

Indicates the specific type of the Section.

adeOfSection ADEOfSection [0..*] Augments the Section with properties defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

Square

 Definition: A Square is a transportation space for unrestricted movement for vehicles,
bicycles and/or pedestrians. This includes plazas as well as large sealed
surfaces such as parking lots.

 Subclass of: AbstractTransportationSpace

 Stereotype: «TopLevelFeatureType»

Attribute Value type and
multiplicity

Definition

class SquareClassValue
[0..1]

Indicates the specific type of the Square.

function SquareFunctionVal
ue [0..*]

Specifies the intended purposes of the Square.

usage SquareUsageValue
[0..*]

Specifies the actual uses of the Square.

adeOfSquare ADEOfSquare [0..*] Augments the Square with properties defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

Track

227

 Definition: A Track is a small path mainly used by pedestrians. Tracks can be segmented
into Sections and Intersections.

 Subclass of: AbstractTransportationSpace

 Stereotype: «TopLevelFeatureType»

Role name Target class and
multiplicity

Definition

section Section [*] Relates to the sections that are part of the Track.

intersection Intersection [*] Relates to the intersections that are part of the Track.

Attribute Value type and
multiplicity

Definition

class TrackClassValue
[0..1]

Indicates the specific type of the Track.

function TrackFunctionValu
e [0..*]

Specifies the intended purposes of the Track.

usage TrackUsageValue
[0..*]

Specifies the actual uses of the Track.

adeOfTrack ADEOfTrack [0..*] Augments the Track with properties defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

TrafficArea

 Definition: A TrafficArea is the ground surface of a TrafficSpace. Traffic areas are the
surfaces upon which traffic actually takes place.

 Subclass of: AbstractThematicSurface

 Stereotype: «FeatureType»

228

Attribute Value type and
multiplicity

Definition

class TrafficAreaClassVal
ue [0..1]

Indicates the specific type of the TrafficArea.

function TrafficAreaFunctio
nValue [0..*]

Specifies the intended purposes of the TrafficArea.

usage TrafficAreaUsageV
alue [0..*]

Specifies the actual uses of the TrafficArea.

surfaceMateri
al

SurfaceMaterialVal
ue [0..1]

Specifies the type of pavement of the TrafficArea.

adeOfTrafficA
rea

ADEOfTrafficArea
[0..*]

Augments the TrafficArea with properties defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

TrafficSpace

 Definition: A TrafficSpace is a space in which traffic takes place. Traffic includes the
movement of entities such as trains, vehicles, pedestrians, ships, or other
transportation types.

 Subclass of: AbstractUnoccupiedSpace

 Stereotype: «FeatureType»

Role name Target class and
multiplicity

Definition

successor TrafficSpace [*] Indicates the successor(s) of the TrafficSpace.

clearanceSpac
e

ClearanceSpace [*] Relates to the clearance spaces that are part of the
TrafficSpace.

predecessor TrafficSpace [*] Indicates the predecessor(s) of the TrafficSpace.

boundary TrafficArea [*] Relates to the traffic areas that bound the TrafficSpace. This
relation is inherited from the Core module.

229

Attribute Value type and
multiplicity

Definition

class TrafficSpaceClassV
alue [0..1]

Indicates the specific type of the TrafficSpace.

function TrafficSpaceFuncti
onValue [0..*]

Specifies the intended purposes of the TrafficSpace.

usage TrafficSpaceUsage
Value [0..*]

Specifies the actual uses of the TrafficSpace.

granularity GranularityValue
[1..1]

Defines whether traffic spaces are represented by individual
ways or by individual lanes, depending on the desired level
of spatial and semantic decomposition.

trafficDirectio
n

TrafficDirectionVal
ue [0..1]

Indicates the direction of traffic flow relative to the
corresponding linear geometry representation.

occupancy Occupancy [0..*] Provides information on the residency of persons, vehicles,
or other moving features in the TrafficSpace.

adeOfTrafficS
pace

ADEOfTrafficSpace
[0..*]

Augments the TrafficSpace with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

Waterway

 Definition: A Waterway is a transportation space used for the movement of vessels upon
or within a water body.

 Subclass of: AbstractTransportationSpace

 Stereotype: «TopLevelFeatureType»

Role name Target class and
multiplicity

Definition

intersection Intersection [*] Relates to the intersections that are part of the Waterway.

section Section [*] Relates to the sections that are part of the Waterway.

230

Attribute Value type and
multiplicity

Definition

class WaterwayClassVal
ue [0..1]

Indicates the specific type of the Waterway.

function WaterwayFunction
Value [0..*]

Specifies the intended purposes of the Waterway.

usage WaterwayUsageVal
ue [0..*]

Specifies the actual uses of the Waterway.

adeOfWaterw
ay

ADEOfWaterway
[0..*]

Augments the Waterway with properties defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

9.11.2. Data Types

ADEOfAbstractTransportationSpace

 Definition: ADEOfAbstractTransportationSpace acts as a hook to define properties within
an ADE that are to be added to AbstractTransportationSpace.

 Subclass of: None

 Stereotype: «DataType»

ADEOfAuxiliaryTrafficArea

 Definition: ADEOfAuxiliaryTrafficArea acts as a hook to define properties within an ADE
that are to be added to an AuxiliaryTrafficArea.

 Subclass of: None

 Stereotype: «DataType»

ADEOfAuxiliaryTrafficSpace

 Definition: ADEOfAuxiliaryTrafficSpace acts as a hook to define properties within an
ADE that are to be added to an AuxiliaryTrafficSpace.

 Subclass of: None

 Stereotype: «DataType»

231

ADEOfClearanceSpace

 Definition: ADEOfClearanceSpace acts as a hook to define properties within an ADE that
are to be added to a ClearanceSpace.

 Subclass of: None

 Stereotype: «DataType»

ADEOfHole

 Definition: ADEOfHole acts as a hook to define properties within an ADE that are to be
added to a Hole.

 Subclass of: None

 Stereotype: «DataType»

ADEOfHoleSurface

 Definition: ADEOfHoleSurface acts as a hook to define properties within an ADE that are
to be added to a HoleSurface.

 Subclass of: None

 Stereotype: «DataType»

ADEOfIntersection

 Definition: ADEOfIntersection acts as a hook to define properties within an ADE that are
to be added to an Intersection.

 Subclass of: None

 Stereotype: «DataType»

ADEOfMarking

 Definition: ADEOfMarking acts as a hook to define properties within an ADE that are to
be added to a Marking.

 Subclass of: None

 Stereotype: «DataType»

232

ADEOfRailway

 Definition: ADEOfRailway acts as a hook to define properties within an ADE that are to
be added to a Railway.

 Subclass of: None

 Stereotype: «DataType»

ADEOfRoad

 Definition: ADEOfRoad acts as a hook to define properties within an ADE that are to be
added to a Road.

 Subclass of: None

 Stereotype: «DataType»

ADEOfSection

 Definition: ADEOfSection acts as a hook to define properties within an ADE that are to be
added to a Section.

 Subclass of: None

 Stereotype: «DataType»

ADEOfSquare

 Definition: ADEOfSquare acts as a hook to define properties within an ADE that are to be
added to a Square.

 Subclass of: None

 Stereotype: «DataType»

ADEOfTrack

 Definition: ADEOfTrack acts as a hook to define properties within an ADE that are to be
added to a Track.

 Subclass of: None

 Stereotype: «DataType»

233

ADEOfTrafficArea

 Definition: ADEOfTrafficArea acts as a hook to define properties within an ADE that are
to be added to a TrafficArea.

 Subclass of: None

 Stereotype: «DataType»

ADEOfTrafficSpace

 Definition: ADEOfTrafficSpace acts as a hook to define properties within an ADE that are
to be added to a TrafficSpace.

 Subclass of: None

 Stereotype: «DataType»

ADEOfWaterway

 Definition: ADEOfWaterway acts as a hook to define properties within an ADE that are to
be added to a Waterway.

 Subclass of: None

 Stereotype: «DataType»

9.11.3. Basic Types

none

9.11.4. Unions

none

9.11.5. Code Lists

AuxiliaryTrafficAreaClassValue

 Definition: AuxiliaryTrafficAreaClassValue is a code list used to further classify an
AuxiliaryTrafficArea.

 Stereotype: «CodeList»

AuxiliaryTrafficAreaFunctionValue

234

 Definition: AuxiliaryTrafficAreaFunctionValue is a code list that enumerates the
different purposes of an AuxiliaryTrafficArea.

 Stereotype: «CodeList»

AuxiliaryTrafficAreaUsageValue

 Definition: AuxiliaryTrafficAreaUsageValue is a code list that enumerates the different
uses of an AuxiliaryTrafficArea.

 Stereotype: «CodeList»

AuxiliaryTrafficSpaceClassValue

 Definition: AuxiliaryTrafficSpaceClassValue is a code list used to further classify an
AuxiliaryTrafficSpace.

 Stereotype: «CodeList»

AuxiliaryTrafficSpaceFunctionValue

 Definition: AuxiliaryTrafficSpaceFunctionValue is a code list that enumerates the
different purposes of an AuxiliaryTrafficSpace.

 Stereotype: «CodeList»

AuxiliaryTrafficSpaceUsageValue

 Definition: AuxiliaryTrafficSpaceUsageValue is a code list that enumerates the different
uses of an AuxiliaryTrafficSpace.

 Stereotype: «CodeList»

ClearanceSpaceClassValue

 Definition: ClearanceSpaceClassValue is a code list used to further classify a
ClearanceSpace.

 Stereotype: «CodeList»

HoleClassValue

235

 Definition: HoleClassValue is a code list used to further classify a Hole.

 Stereotype: «CodeList»

IntersectionClassValue

 Definition: IntersectionClassValue is a code list used to further classify an Intersection.

 Stereotype: «CodeList»

MarkingClassValue

 Definition: MarkingClassValue is a code list used to further classify a Marking.

 Stereotype: «CodeList»

RailwayClassValue

 Definition: RailwayClassValue is a code list used to further classify a Railway.

 Stereotype: «CodeList»

RailwayFunctionValue

 Definition: RailwayFunctionValue is a code list that enumerates the different purposes of
a Railway.

 Stereotype: «CodeList»

RailwayUsageValue

 Definition: RailwayUsageValue is a code list that enumerates the different uses of a
Railway.

 Stereotype: «CodeList»

RoadClassValue

 Definition: RoadClassValue is a code list used to further classify a Road.

 Stereotype: «CodeList»

236

RoadFunctionValue

 Definition: RoadFunctionValue is a code list that enumerates the different purposes of a
Road.

 Stereotype: «CodeList»

RoadUsageValue

 Definition: RoadUsageValue is a code list that enumerates the different uses of a Road.

 Stereotype: «CodeList»

SectionClassValue

 Definition: SectionClassValue is a code list used to further classify a Section.

 Stereotype: «CodeList»

SquareClassValue

 Definition: SquareClassValue is a code list used to further classify a Square.

 Stereotype: «CodeList»

SquareFunctionValue

 Definition: SquareFunctionValue is a code list that enumerates the different purposes of
a Square.

 Stereotype: «CodeList»

SquareUsageValue

 Definition: SquareUsageValue is a code list that enumerates the different uses of a
Square.

 Stereotype: «CodeList»

SurfaceMaterialValue

237

 Definition: SurfaceMaterialValue is a code list that enumerates the different surface
materials.

 Stereotype: «CodeList»

TrackClassValue

 Definition: TrackClassValue is a code list used to further classify a Track.

 Stereotype: «CodeList»

TrackFunctionValue

 Definition: TrackFunctionValue is a code list that enumerates the different purposes of a
Track.

 Stereotype: «CodeList»

TrackUsageValue

 Definition: TrackUsageValue is a code list that enumerates the different uses of a Track.

 Stereotype: «CodeList»

TrafficAreaClassValue

 Definition: TrafficAreaClassValue is a code list used to further classify a TrafficArea.

 Stereotype: «CodeList»

TrafficAreaFunctionValue

 Definition: TrafficAreaFunctionValue is a code list that enumerates the different
purposes of a TrafficArea.

 Stereotype: «CodeList»

TrafficAreaUsageValue

238

 Definition: TrafficAreaUsageValue is a code list that enumerates the different uses of a
TrafficArea.

 Stereotype: «CodeList»

TrafficSpaceClassValue

 Definition: TrafficSpaceClassValue is a code list used to further classify a TrafficSpace.

 Stereotype: «CodeList»

TrafficSpaceFunctionValue

 Definition: TrafficSpaceFunctionValue is a code list that enumerates the different
purposes of a TrafficSpace.

 Stereotype: «CodeList»

TrafficSpaceUsageValue

 Definition: TrafficSpaceUsageValue is a code list that enumerates the different uses of a
TrafficSpace.

 Stereotype: «CodeList»

WaterwayClassValue

 Definition: WaterwayClassValue is a code list used to further classify a Waterway.

 Stereotype: «CodeList»

WaterwayFunctionValue

 Definition: WaterwayFunctionValue is a code list that enumerates the different purposes
of a Waterway.

 Stereotype: «CodeList»

WaterwayUsageValue

239

 Definition: WaterwayUsageValue is a code list that enumerates the different uses of a
Waterway.

 Stereotype: «CodeList»

9.11.6. Enumerations

GranularityValue

Definition: GranularityValue enumerates the different levels of granularity in which
transportation objects are represented.

StereoType: <<Enumeration>>

Literal value Definition

lane Indicates that the individual lanes of the transportation object are
represented.

way Indicates that the individual (carriage)ways of the transportation object are
represented.

TrafficDirectionValue

Definition: TrafficDirectionValue enumerates the allowed directions of travel of a mobile
object.

StereoType: <<Enumeration>>

Literal value Definition

forwards Indicates that traffic flows in the direction of the corresponding linear
geometry.

backwards Indicates that traffic flows in the opposite direction of the corresponding
linear geometry.

both Indicates that traffic flows in both directions.

9.12. Vegetation

 Description: The Vegetation module supports representation of vegetation objects with
vegetation-specific thematic classes. CityGML’s vegetation model distinguishes
between solitary vegetation objects like trees, and vegetation areas which
represent biotopes like forests or other plant communities.

 Parent Package: CityGML

240

 Stereotype: «ApplicationSchema»

9.12.1. Classes

AbstractVegetationObject

 Definition: AbstractVegetationObject is the abstract superclass for all kinds of vegetation
objects.

 Subclass of: AbstractOccupiedSpace

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

adeOfAbstract
VegetationObj
ect

ADEOfAbstractVeg
etationObject [0..*]

Augments AbstractVegetationObject with properties defined
in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

PlantCover

 Definition: A PlantCover represents a space covered by vegetation.

 Subclass of: AbstractVegetationObject

 Stereotype: «TopLevelFeatureType»

Attribute Value type and
multiplicity

Definition

class PlantCoverClassVal
ue [0..1]

Indicates the specific type of the PlantCover.

function PlantCoverFunctio
nValue [0..*]

Specifies the intended purposes of the PlantCover.

usage PlantCoverUsageVa
lue [0..*]

Specifies the actual uses of the PlantCover.

averageHeight Length [0..1] Specifies the average height of the PlantCover.

minHeight Length [0..1] Specifies the minimum height of the PlantCover.

maxHeight Length [0..1] Specifies the maximum height of the PlantCover.

adeOfPlantCo
ver

ADEOfPlantCover
[0..*]

Augments the PlantCover with properties defined in an ADE.

241

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

SolitaryVegetationObject

 Definition: A SolitaryVegetationObject represents individual vegetation objects, e.g. trees
or bushes.

 Subclass of: AbstractVegetationObject

 Stereotype: «TopLevelFeatureType»

Attribute Value type and
multiplicity

Definition

class SolitaryVegetation
ObjectClassValue
[0..1]

Indicates the specific type of the SolitaryVegetationObject.

function SolitaryVegetation
ObjectFunctionVal
ue [0..*]

Specifies the intended purposes of the
SolitaryVegetationObject.

usage SolitaryVegetation
ObjectUsageValue
[0..*]

Specifies the actual uses of the SolitaryVegetationObject.

species SpeciesValue [0..1] Indicates the botanical name of the SolitaryVegetationObject.

height Length [0..1] Distance between the highest point of the vegetation object
and the lowest point of the terrain at the bottom of the
object.

trunkDiamete
r

Length [0..1] Specifies the diameter of the SolitaryCityObject’s trunk.

crownDiamet
er

Length [0..1] Specifies the diameter of the SolitaryCityObject’s crown.

rootBallDiame
ter

Length [0..1] Specifies the diameter of the SolitaryCityObject’s root ball.

maxRootBallD
epth

Length [0..1] Specifies the vertical distance between the lowest point of
the SolitaryVegetationObject’s root ball and the terrain
surface.

adeOfSolitary
VegetationObj
ect

ADEOfSolitaryVege
tationObject [0..*]

Augments the SolitaryVegetationObject with properties
defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

242

9.12.2. Data Types

ADEOfAbstractVegetationObject

 Definition: ADEOfAbstractVegetationObject acts as a hook to define properties within an
ADE that are to be added to AbstractVegetationObject.

 Subclass of: None

 Stereotype: «DataType»

ADEOfPlantCover

 Definition: ADEOfPlantCover acts as a hook to define properties within an ADE that are
to be added to a PlantCover.

 Subclass of: None

 Stereotype: «DataType»

ADEOfSolitaryVegetationObject

 Definition: ADEOfSolitaryVegetationObject acts as a hook to define properties within an
ADE that are to be added to a SolitaryVegetationObject.

 Subclass of: None

 Stereotype: «DataType»

9.12.3. Basic Types

none

9.12.4. Unions

none

9.12.5. Code Lists

PlantCoverClassValue

 Definition: PlantCoverClassValue is a code list used to further classify a PlantCover.

 Stereotype: «CodeList»

PlantCoverFunctionValue

243

 Definition: PlantCoverFunctionValue is a code list that enumerates the different
purposes of a PlantCover.

 Stereotype: «CodeList»

PlantCoverUsageValue

 Definition: PlantCoverUsageValue is a code list that enumerates the different uses of a
PlantCover.

 Stereotype: «CodeList»

SolitaryVegetationObjectClassValue

 Definition: SolitaryVegetationObjectClassValue is a code list used to further classify a
SolitaryVegetationObject.

 Stereotype: «CodeList»

SolitaryVegetationObjectFunctionValue

 Definition: SolitaryVegetationObjectFunctionValue is a code list that enumerates the
different purposes of a SolitaryVegetationObject.

 Stereotype: «CodeList»

SolitaryVegetationObjectUsageValue

 Definition: SolitaryVegetationObjectUsageValue is a code list that enumerates the
different uses of a SolitaryVegetationObject.

 Stereotype: «CodeList»

SpeciesValue

 Definition: A SpeciesValue is a code list that enumerates the species of a
SolitaryVegetationObject.

 Stereotype: «CodeList»

9.12.6. Enumerations

none

244

9.13. Versioning

 Description: The Versioning module supports representation of multiple versions of
CityGML features within a single CityGML model. In addition, also the version
transitions and transactions that lead to the different versions can be
represented.

 Parent Package: CityGML

 Stereotype: «ApplicationSchema»

9.13.1. Classes

Version

 Definition: Version represents a defined state of a city model consisting of the dedicated
versions of all city object instances that belong to the respective city model
version. Versions can have names, a description and can be labeled with an
arbitrary number of user defined tags.

 Subclass of: AbstractVersion

 Stereotype: «FeatureType»

Role name Target class and
multiplicity

Definition

versionMemb
er «Version»

AbstractFeatureWit
hLifespan [*]

Relates to all city objects that are part of the city model
version.

Attribute Value type and
multiplicity

Definition

tag CharacterString
[0..*]

Allows for adding keywords to the city model version.

adeOfVersion ADEOfVersion [0..*] Augments the Version with properties defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

VersionTransition

245

 Definition: VersionTransition describes the change of the state of a city model from one
version to another. Version transitions can have names, a description and can
be further qualified by a type and a reason.

 Subclass of: AbstractVersionTransition

 Stereotype: «FeatureType»

Role name Target class and
multiplicity

Definition

from Version [0..1] Relates to the predecessor version of the VersionTransition.

transaction Transaction [*] Relates to all transactions that have been applied as part of
the VersionTransition.

to Version [0..1] Relates to the sucessor version of the VersionTransition.

Attribute Value type and
multiplicity

Definition

reason CharacterString
[0..1]

Specifies why the VersionTransition has been carried out.

clonePredeces
sor

Boolean [1..1] Indicates whether the set of city object instances belonging
to the successor version of the city model is either explicitly
enumerated within the successor version object (attribute
clonePredecessor=false), or has to be derived from the
modifications of the city model provided as a list of
transactions on the city object versions contained in the
predecessor version (attribute clonePredecessor=true).

type TransitionTypeVal
ue [0..1]

Indicates the specific type of the VersionTransition.

adeOfVersion
Transition

ADEOfVersionTran
sition [0..*]

Augments the VersionTransition with properties defined in
an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

9.13.2. Data Types

ADEOfVersion

 Definition: ADEOfVersion acts as a hook to define properties within an ADE that are to be
added to a Version.

 Subclass of: None

 Stereotype: «DataType»

246

ADEOfVersionTransition

 Definition: ADEOfVersionTransition acts as a hook to define properties within an ADE
that are to be added to a VersionTransition.

 Subclass of: None

 Stereotype: «DataType»

Transaction

 Definition: Transaction represents a modification of the city model by the creation,
termination, or replacement of a specific city object. While the creation of a
city object also marks its first object version, the termination marks the end
of existence of a real world object and, hence, also terminates the final
version of a city object. The replacement of a city object means that a specific
version of it is replaced by a new version.

 Subclass of: None

 Stereotype: «DataType»

Role name Target class and
multiplicity

Definition

newFeature
«Version»

AbstractFeatureWit
hLifespan [0..1]

Relates to the version of the city object subsequent to the
Transaction.

oldFeature
«Version»

AbstractFeatureWit
hLifespan [0..1]

Relates to the version of the city object prior to the
Transaction.

Attribute Value type and
multiplicity

Definition

type TransactionTypeVa
lue [1..1]

Indicates the specific type of the Transaction.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

9.13.3. Basic Types

none

9.13.4. Unions

none

247

9.13.5. Code Lists

none

9.13.6. Enumerations

TransactionTypeValue

Definition: TransactionTypeValue enumerates the three possible types of transactions:
insert, delete, or replace.

StereoType: <<Enumeration>>

Literal value Definition

insert Indicates that the feature referenced from the Transaction via the
"newFeature" association has been newly created; the association
"oldFeature" is empty in this case.

delete Indicates that the feature referenced from the Transaction via the
"oldFeature" association ceases to exist; the association "newFeature" is
empty in this case.

replace Indicates that the feature referenced from the Transaction via the
"oldFeature" association has been replaced by the feature referenced via the
"newFeature" association.

TransitionTypeValue

Definition: TransitionTypeValue enumerates the different kinds of version transitions.
“planned” and “fork” should be used in cases when from one city model
version multiple successor versions are being created. “realized” and “merge”
should be used when different city model versions are converging into a
common successor version.

StereoType: <<Enumeration>>

248

Literal value Definition

planned Indicates that the successor version of the city model represents a planning
state for a possible future of the city.

realized Indicates that the predecessor version is the chosen one from a number of
possible planning versions.

historicalSuccessi
on

Indicates that the successor version reflects updates on the city model over
time (historical timeline). It shall only be used for at most one version
transition outgoing from a city model version.

fork Indicates other reasons to create alternative city model versions, for example,
when different parties are updating parts of the city model or to reflect the
results of different simulation runs.

merge Indicates other reasons to converge multiple versions back into a common
city model version.

9.14. WaterBody

 Description: The WaterBody module supports representation of the thematic aspects and
3D geometry of rivers, canals, lakes, and basins. It does, however, not inherit
any hydrological or other dynamic aspects of fluid flow.

 Parent Package: CityGML

 Stereotype: «ApplicationSchema»

9.14.1. Classes

AbstractWaterBoundarySurface

 Definition: AbstractWaterBoundarySurface is the abstract superclass for all kinds of
thematic surfaces bounding a water body.

 Subclass of: AbstractThematicSurface

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

adeOfAbstract
WaterBounda
rySurface

ADEOfAbstractWat
erBoundarySurface
[0..*]

Augments AbstractWaterBoundarySurface with properties
defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

249

WaterBody

 Definition: A WaterBody represents significant and permanent or semi-permanent
accumulations of surface water, usually covering a part of the Earth.

 Subclass of: AbstractOccupiedSpace

 Stereotype: «TopLevelFeatureType»

Role name Target class and
multiplicity

Definition

boundary AbstractWaterBou
ndarySurface [*]

Attribute Value type and
multiplicity

Definition

class WaterBodyClassVal
ue [0..1]

Indicates the specific type of the WaterBody.

function WaterBodyFunctio
nValue [0..*]

Specifies the intended purposes of the WaterBody.

usage WaterBodyUsageV
alue [0..*]

Specifies the actual uses of the WaterBody.

adeOfWaterB
ody

ADEOfWaterBody
[0..*]

Augments the WaterBody with properties defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

WaterGroundSurface

 Definition: A WaterGroundSurface represents the exterior boundary surface of the
submerged bottom of a water body.

 Subclass of: AbstractWaterBoundarySurface

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

adeOfWaterG
roundSurface

ADEOfWaterGroun
dSurface [0..*]

Augments the WaterGroundSurface with properties defined
in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

250

WaterSurface

 Definition: A WaterSurface represents the upper exterior interface between a water
body and the atmosphere.

 Subclass of: AbstractWaterBoundarySurface

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

waterLevel WaterLevelValue
[0..1]

Specifies the level of the WaterSurface.

adeOfWaterS
urface

ADEOfWaterSurfac
e [0..*]

Augments the WaterSurface with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

9.14.2. Data Types

ADEOfAbstractWaterBoundarySurface

 Definition: ADEOfAbstractWaterBoundarySurface acts as a hook to define properties
within an ADE that are to be added to AbstractWaterBoundarySurface.

 Subclass of: None

 Stereotype: «DataType»

ADEOfWaterBody

 Definition: ADEOfWaterBody acts as a hook to define properties within an ADE that are
to be added to a WaterBody.

 Subclass of: None

 Stereotype: «DataType»

ADEOfWaterGroundSurface

 Definition: ADEOfWaterGroundSurface acts as a hook to define properties within an ADE
that are to be added to a WaterGroundSurface.

 Subclass of: None

 Stereotype: «DataType»

251

ADEOfWaterSurface

 Definition: ADEOfWaterSurface acts as a hook to define properties within an ADE that
are to be added to a WaterSurface.

 Subclass of: None

 Stereotype: «DataType»

9.14.3. Basic Types

none

9.14.4. Unions

none

9.14.5. Code Lists

WaterBodyClassValue

 Definition: WaterBodyClassValue is a code list used to further classify a WaterBody.

 Stereotype: «CodeList»

WaterBodyFunctionValue

 Definition: WaterBodyFunctionValue is a code list that enumerates the different
purposes of a WaterBody.

 Stereotype: «CodeList»

WaterBodyUsageValue

 Definition: WaterBodyUsageValue is a code list that enumerates the different uses of a
WaterBody.

 Stereotype: «CodeList»

WaterLevelValue

252

 Definition: WaterLevelValue is a code list that enumerates the different levels of a water
surface.

 Stereotype: «CodeList»

9.14.6. Enumerations

none

9.15. Construction

 Description: The Construction module supports representation of key elements of different
types of constructions. These key elements include construction surfaces (e.g
floor and ceiling), windows and doors, constructive elements (e.g. beams and
slabs), installations, and furniture.

 Parent Package: CityGML

 Stereotype: «ApplicationSchema»

9.15.1. Classes

AbstractConstruction

 Definition: AbstractConstruction is the abstract superclass for objects that are
manufactured by humans from construction materials, are connected to
earth, and are intended to be permanent. A connection with the ground also
exists when the construction rests by its own weight on the ground or is
moveable limited on stationary rails or if the construction is intended to be
used mainly stationary.

 Subclass of: AbstractOccupiedSpace

 Stereotype: «FeatureType»

Role name Target class and
multiplicity

Definition

boundary AbstractThematicS
urface [*]

Relates to the surfaces that bound the construction. This
relation is inherited from the Core module.

253

Attribute Value type and
multiplicity

Definition

conditionOfCo
nstruction

ConditionOfConstr
uctionValue [0..1]

Indicates the life-cycle status of the construction. [cf.
INSPIRE]

dateOfConstru
ction

Date [0..1] Indicates the date at which the construction was completed.

dateOfDemoli
tion

Date [0..1] Indicates the date at which the construction was demolished.

constructionE
vent

ConstructionEvent
[0..*]

Describes specific events in the life-time of the construction.

elevation Elevation [0..*] Specifies qualified elevations of the construction in relation
to a well-defined surface which is commonly taken as origin
(e.g. geoid or water level). [cf. INSPIRE]

height Height [0..*] Specifies qualified heights of the construction above ground
or below ground. [cf. INSPIRE]

occupancy Occupancy [0..*] Provides qualified information on the residency of persons,
animals, or other moveable objects in the construction.

adeOfAbstract
Construction

ADEOfAbstractCon
struction [0..*]

Augments AbstractConstruction with properties defined in
an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

AbstractConstructionSurface

 Definition: AbstractConstructionSurface is the abstract superclass for different kinds of
surfaces that bound a construction.

 Subclass of: AbstractThematicSurface

 Stereotype: «FeatureType»

Role name Target class and
multiplicity

Definition

fillingSurface AbstractFillingSurf
ace [*]

Relates to the surfaces that seal the openings of the
construction surface.

Attribute Value type and
multiplicity

Definition

adeOfAbstract
ConstructionS
urface

ADEOfAbstractCon
structionSurface
[0..*]

Augments AbstractConstructionSurface with properties
defined in an ADE.

254

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

AbstractConstructiveElement

 Definition: AbstractConstructiveElement is the abstract superclass for the representation
of volumetric elements of a construction. Examples are walls, beams, slabs.

 Subclass of: AbstractOccupiedSpace

 Stereotype: «FeatureType»

Role name Target class and
multiplicity

Definition

boundary AbstractThematicS
urface [*]

Relates to the surfaces that bound the constructive element.
This relation is inherited from the Core module.

filling AbstractFillingEle
ment [*]

Relates to the elements that fill the opening of the
constructive element.

Attribute Value type and
multiplicity

Definition

isStructuralEl
ement

Boolean [0..1] Indicates whether the constructive element is essential from
a structural point of view. A structural element cannot be
omitted without collapsing of the construction. Examples are
pylons and anchorages of bridges.

adeOfAbstract
ConstructiveE
lement

ADEOfAbstractCon
structiveElement
[0..*]

Augments AbstractConstructiveElement with properties
defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

AbstractFillingElement

 Definition: AbstractFillingElement is the abstract superclass for different kinds of
elements that fill the openings of a construction.

 Subclass of: AbstractOccupiedSpace

 Stereotype: «FeatureType»

255

Attribute Value type and
multiplicity

Definition

adeOfAbstract
FillingElemen
t

ADEOfAbstractFilli
ngElement [0..*]

Augments AbstractFillingElement with properties defined in
an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

AbstractFillingSurface

 Definition: AbstractFillingSurface is the abstract superclass for different kinds of
surfaces that seal openings filled by filling elements.

 Subclass of: AbstractThematicSurface

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

adeOfAbstract
FillingSurface

ADEOfAbstractFilli
ngSurface [0..*]

Augments AbstractFillingSurface with properties defined in
an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

AbstractFurniture

 Definition: AbstractFurniture is the abstract superclass for the representation of
furniture objects of a construction.

 Subclass of: AbstractOccupiedSpace

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

adeOfAbstract
Furniture

ADEOfAbstractFur
niture [0..*]

Augments AbstractFurniture with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

AbstractInstallation

256

 Definition: AbstractInstallation is the abstract superclass for the representation of
installation objects of a construction.

 Subclass of: AbstractOccupiedSpace

 Stereotype: «FeatureType»

Role name Target class and
multiplicity

Definition

boundary AbstractThematicS
urface [*]

Relates to the surfaces that bound the installation. This
relation is inherited from the Core module.

Attribute Value type and
multiplicity

Definition

relationToCon
struction

RelationToConstruc
tion [0..1]

Indicates whether the installation is located inside and/or
outside of the construction.

adeOfAbstract
Installation

ADEOfAbstractInst
allation [0..*]

Augments AbstractInstallation with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

CeilingSurface

 Definition: A CeilingSurface is a surface that represents the interior ceiling of a
construction. An example is the ceiling of a room.

 Subclass of: AbstractConstructionSurface

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

adeOfCeilingS
urface

ADEOfCeilingSurfa
ce [0..*]

Augments the CeilingSurface with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

Door

257

 Definition: A Door is a construction for closing an opening intended primarily for access
or egress or both. [cf. ISO 6707-1]

 Subclass of: AbstractFillingElement

 Stereotype: «FeatureType»

Role name Target class and
multiplicity

Definition

address Address [*] Relates to the addresses that are assigned to the Door.

boundary DoorSurface [*] Relates to the door surfaces that bound the Door. This
relation is inherited from the Core module.

Attribute Value type and
multiplicity

Definition

class DoorClassValue
[0..1]

Indicates the specific type of the Door.

function DoorFunctionValue
[0..*]

Specifies the intended purposes of the Door.

usage DoorUsageValue
[0..*]

Specifies the actual uses of the Door.

adeOfDoor ADEOfDoor [0..*] Augments the Door with properties defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

DoorSurface

 Definition: A DoorSurface is either a boundary surface of a Door feature or a surface that
seals an opening filled by a door.

 Subclass of: AbstractFillingSurface

 Stereotype: «FeatureType»

Role name Target class and
multiplicity

Definition

address Address [*] Relates to the addresses that are assigned to the DoorSurface.

Attribute Value type and
multiplicity

Definition

adeOfDoorSur
face

ADEOfDoorSurface
[0..*]

Augments the DoorSurface with properties defined in an
ADE.

258

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

FloorSurface

 Definition: A FloorSurface is surface that represents the interior floor of a construction.
An example is the floor of a room.

 Subclass of: AbstractConstructionSurface

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

adeOfFloorSu
rface

ADEOfFloorSurface
[0..*]

Augments the FloorSurface with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

GroundSurface

 Definition: A GroundSurface is a surface that represents the ground plate of a
construction. The polygon defining the ground plate is congruent with the
footprint of the construction.

 Subclass of: AbstractConstructionSurface

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

adeOfGround
Surface

ADEOfGroundSurfa
ce [0..*]

Augments the GroundSurface with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

InteriorWallSurface

 Definition: An InteriorWallSurface is a surface that is visible from inside a construction.
An example is the wall of a room.

 Subclass of: AbstractConstructionSurface

 Stereotype: «FeatureType»

259

Attribute Value type and
multiplicity

Definition

adeOfInterior
WallSurface

ADEOfInteriorWall
Surface [0..*]

Augments the InteriorWallSurface with properties defined in
an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

OtherConstruction

 Definition: An OtherConstruction is a construction that is not covered by any of the other
subclasses of AbstractConstruction.

 Subclass of: AbstractConstruction

 Stereotype: «TopLevelFeatureType»

Attribute Value type and
multiplicity

Definition

class OtherConstruction
ClassValue [0..1]

Indicates the specific type of the OtherConstruction.

function OtherConstruction
FunctionValue
[0..*]

Specifies the intended purposes of the OtherConstruction.

usage OtherConstruction
UsageValue [0..*]

Specifies the actual uses of the OtherConstruction.

adeOfOtherCo
nstruction

ADEOfOtherConstr
uction [0..*]

Augments the OtherConstruction with properties defined in
an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

OuterCeilingSurface

 Definition: An OuterCeilingSurface is a surface that belongs to the outer building shell
with the orientation pointing downwards. An example is the ceiling of a
loggia.

 Subclass of: AbstractConstructionSurface

 Stereotype: «FeatureType»

260

Attribute Value type and
multiplicity

Definition

adeOfOuterCe
ilingSurface

ADEOfOuterCeiling
Surface [0..*]

Augments the OuterCeilingSurface with properties defined
in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

OuterFloorSurface

 Definition: An OuterFloorSurface is a surface that belongs to the outer construction shell
with the orientation pointing upwards. An example is the floor of a loggia.

 Subclass of: AbstractConstructionSurface

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

adeOfOuterFl
oorSurface

ADEOfOuterFloorS
urface [0..*]

Augments the OuterFloorSurface with properties defined in
an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

RoofSurface

 Definition: A RoofSurface is a surface that delimits major roof parts of a construction.

 Subclass of: AbstractConstructionSurface

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

adeOfRoofSur
face

ADEOfRoofSurface
[0..*]

Augments the RoofSurface with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

WallSurface

261

 Definition: A WallSurface is a surface that is part of the building facade visible from the
outside.

 Subclass of: AbstractConstructionSurface

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

adeOfWallSur
face

ADEOfWallSurface
[0..*]

Augments the WallSurface with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

Window

 Definition: A Window is a construction for closing an opening in a wall or roof, primarily
intended to admit light and/or provide ventilation. [cf. ISO 6707-1]

 Subclass of: AbstractFillingElement

 Stereotype: «FeatureType»

Role name Target class and
multiplicity

Definition

boundary WindowSurface [*] Relates to the window surfaces that bound the Window. This
relation is inherited from the Core module.

Attribute Value type and
multiplicity

Definition

class WindowClassValue
[0..1]

Indicates the specific type of the Window.

function WindowFunctionV
alue [0..*]

Specifies the intended purposes of the Window.

usage WindowUsageValu
e [0..*]

Specifies the actual uses of the Window.

adeOfWindow ADEOfWindow
[0..*]

Augments the Window with properties defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

WindowSurface

262

 Definition: A WindowSurface is either a boundary surface of a Window feature or a
surface that seals an opening filled by a window.

 Subclass of: AbstractFillingSurface

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

adeOfWindow
Surface

ADEOfWindowSurf
ace [0..*]

Augments the WindowSurface with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

9.15.2. Data Types

ADEOfAbstractConstruction

 Definition: ADEOfAbstractConstruction acts as a hook to define properties within an ADE
that are to be added to AbstractConstruction.

 Subclass of: None

 Stereotype: «DataType»

ADEOfAbstractConstructionSurface

 Definition: ADEOfAbstractConstructionSurface acts as a hook to define properties within
an ADE that are to be added to AbstractConstructionSurface.

 Subclass of: None

 Stereotype: «DataType»

ADEOfAbstractConstructiveElement

 Definition: ADEOfAbstractConstructiveElement acts as a hook to define properties within
an ADE that are to be added to AbstractConstructiveElement.

 Subclass of: None

 Stereotype: «DataType»

263

ADEOfAbstractFillingElement

 Definition: ADEOfAbstractFillingElement acts as a hook to define properties within an
ADE that are to be added to AbstractFillingElement.

 Subclass of: None

 Stereotype: «DataType»

ADEOfAbstractFillingSurface

 Definition: ADEOfAbstractFillingSurface acts as a hook to define properties within an
ADE that are to be added to AbstractFillingSurface.

 Subclass of: None

 Stereotype: «DataType»

ADEOfAbstractFurniture

 Definition: ADEOfAbstractFurniture acts as a hook to define properties within an ADE
that are to be added to AbstractFurniture.

 Subclass of: None

 Stereotype: «DataType»

ADEOfAbstractInstallation

 Definition: ADEOfAbstractInstallation acts as a hook to define properties within an ADE
that are to be added to AbstractInstallation.

 Subclass of: None

 Stereotype: «DataType»

ADEOfCeilingSurface

 Definition: ADEOfCeilingSurface acts as a hook to define properties within an ADE that
are to be added to a CeilingSurface.

 Subclass of: None

 Stereotype: «DataType»

264

ADEOfDoor

 Definition: ADEOfDoor acts as a hook to define properties within an ADE that are to be
added to a Door.

 Subclass of: None

 Stereotype: «DataType»

ADEOfDoorSurface

 Definition: ADEOfDoorSurface acts as a hook to define properties within an ADE that are
to be added to a DoorSurface.

 Subclass of: None

 Stereotype: «DataType»

ADEOfFloorSurface

 Definition: ADEOfFloorSurface acts as a hook to define properties within an ADE that are
to be added to a FloorSurface.

 Subclass of: None

 Stereotype: «DataType»

ADEOfGroundSurface

 Definition: ADEOfGroundSurface acts as a hook to define properties within an ADE that
are to be added to a GroundSurface.

 Subclass of: None

 Stereotype: «DataType»

ADEOfInteriorWallSurface

 Definition: ADEOfInteriorWallSurface acts as a hook to define properties within an ADE
that are to be added to an InteriorWallSurface.

 Subclass of: None

 Stereotype: «DataType»

265

ADEOfOtherConstruction

 Definition: ADEOfOtherConstruction acts as a hook to define properties within an ADE
that are to be added to an OtherConstruction.

 Subclass of: None

 Stereotype: «DataType»

ADEOfOuterCeilingSurface

 Definition: ADEOfOuterCeilingSurface acts as a hook to define properties within an ADE
that are to be added to an OuterCeilingSurface.

 Subclass of: None

 Stereotype: «DataType»

ADEOfOuterFloorSurface

 Definition: ADEOfOuterFloorSurface acts as a hook to define properties within an ADE
that are to be added to an OuterFloorSurface.

 Subclass of: None

 Stereotype: «DataType»

ADEOfRoofSurface

 Definition: ADEOfRoofSurface acts as a hook to define properties within an ADE that are
to be added to a RoofSurface.

 Subclass of: None

 Stereotype: «DataType»

ADEOfWallSurface

 Definition: ADEOfWallSurface acts as a hook to define properties within an ADE that are
to be added to a WallSurface.

 Subclass of: None

 Stereotype: «DataType»

266

ADEOfWindow

 Definition: ADEOfWindow acts as a hook to define properties within an ADE that are to
be added to a Window.

 Subclass of: None

 Stereotype: «DataType»

ADEOfWindowSurface

 Definition: ADEOfWindowSurface acts as a hook to define properties within an ADE that
are to be added to a WindowSurface.

 Subclass of: None

 Stereotype: «DataType»

ConstructionEvent

 Definition: A ConstructionEvent is a data type used to describe a specific event that is
associated with a construction. Examples are the issuing of a building permit
or the renovation of a building.

 Subclass of: None

 Stereotype: «DataType»

Attribute Value type and
multiplicity

Definition

event EventValue [1..1] Indicates the specific event type.

dateOfEvent Date [1..1] Specifies the date at which the event took or will take place.

description CharacterString
[0..1]

Provides additional information on the event.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

Elevation

 Definition: Elevation is a data type that includes the elevation value itself and
information on how this elevation was measured. [cf. INSPIRE]

 Subclass of: None

 Stereotype: «DataType»

267

Attribute Value type and
multiplicity

Definition

elevationRefe
rence

ElevationReference
Value [1..1]

Specifies the level from which the elevation was measured.
[cf. INSPIRE]

elevationValu
e

DirectPosition [1..1] Specifies the value of the elevation. [cf. INSPIRE]

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

Height

 Definition: Height represents a vertical distance (measured or estimated) between a low
reference and a high reference. [cf. INSPIRE]

 Subclass of: None

 Stereotype: «DataType»

Attribute Value type and
multiplicity

Definition

highReference ElevationReference
Value [1..1]

Indicates the high point used to calculate the value of the
height. [cf. INSPIRE]

lowReference ElevationReference
Value [1..1]

Indicates the low point used to calculate the value of the
height. [cf. INSPIRE]

status HeightStatusValue
[1..1]

Indicates the way the height has been captured. [cf. INSPIRE]

value Length [1..1] Specifies the value of the height above or below ground. [cf.
INSPIRE]

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

9.15.3. Basic Types

none

9.15.4. Unions

none

9.15.5. Code Lists

DoorClassValue

268

 Definition: DoorClassValue is a code list used to further classify a Door.

 Stereotype: «CodeList»

DoorFunctionValue

 Definition: DoorFunctionValue is a code list that enumerates the different purposes of a
Door.

 Stereotype: «CodeList»

DoorUsageValue

 Definition: DoorUsageValue is a code list that enumerates the different uses of a Door.

 Stereotype: «CodeList»

ElevationReferenceValue

 Definition: ElevationReferenceValue is a code list that enumerates the different elevation
reference levels used to measure construction heights.

 Stereotype: «CodeList»

EventValue

 Definition: EventValue is a code list that enumerates the different events of a
construction.

 Stereotype: «CodeList»

OtherConstructionClassValue

 Definition: OtherConstructionClassValue is a code list used to further classify an
OtherConstruction.

 Stereotype: «CodeList»

OtherConstructionFunctionValue

269

 Definition: OtherConstructionFunctionValue is a code list that enumerates the different
purposes of an OtherConstruction.

 Stereotype: «CodeList»

OtherConstructionUsageValue

 Definition: OtherConstructionUsageValue is a code list that enumerates the different uses
of an OtherConstruction.

 Stereotype: «CodeList»

WindowClassValue

 Definition: WindowClassValue is a code list used to further classify a Window.

 Stereotype: «CodeList»

WindowFunctionValue

 Definition: WindowFunctionValue is a code list that enumerates the different purposes
of a Window.

 Stereotype: «CodeList»

WindowUsageValue

 Definition: WindowUsageValue is a code list that enumerates the different uses of a
Window.

 Stereotype: «CodeList»

9.15.6. Enumerations

ConditionOfConstructionValue

Definition: ConditionOfConstructionValue enumerates different conditions of a
construction. [cf. INSPIRE]

StereoType: <<Enumeration>>

270

Literal value Definition

declined Indicates that the construction cannot be used under normal conditions,
though its main elements (walls, roof) are still present. [cf. INSPIRE]

demolished Indicates that the construction has been demolished. There are no more
visible remains. [cf. INSPIRE]

functional Indicates that the construction is functional. [cf. INSPIRE]

projected Indicates that the construction is being designed. Construction works have
not yet started. [cf. INSPIRE]

ruin Indicates that the construction has been partly demolished and some main
elements (roof, walls) have been destroyed. There are some visible remains of
the construction. [cf. INSPIRE]

underConstructio
n

Indicates that the construction is under construction and not yet functional.
This applies only to the initial construction works of the construction and not
to maintenance work. [cf. INSPIRE]

HeightStatusValue

Definition: HeightStatusValue enumerates the different methods used to capture a
height. [cf. INSPIRE]

StereoType: <<Enumeration>>

Literal value Definition

estimated Indicates that the height has been estimated and not measured. [cf. INSPIRE]

measured Indicates that the height has been (directly or indirectly) measured. [cf.
INSPIRE]

RelationToConstruction

Definition: RelationToConstruction is an enumeration used to describe whether an
installation is positioned inside and/or outside of a construction.

StereoType: <<Enumeration>>

Literal value Definition

inside Indicates that the installation is positioned inside of the construction.

outside Indicates that the installation is positioned outside of the construction.

bothInsideAndOut
side

Indicates that the installation is positioned inside as well as outside of the
construction.

271

9.16. Bridge

 Description: The Bridge module supports representation of thematic and spatial aspects of
bridges, bridge parts, bridge installations, and interior bridge structures.

 Parent Package: CityGML

 Stereotype: «ApplicationSchema»

9.16.1. Classes

AbstractBridge

 Definition: AbstractBridge is an abstract superclass representing the common attributes
and associations of the classes Bridge and BridgePart.

 Subclass of: AbstractConstruction

 Stereotype: «FeatureType»

Role name Target class and
multiplicity

Definition

bridgeConstru
ctiveElement

BridgeConstructive
Element [*]

Relates the constructive elements to the Bridge or
BridgePart.

bridgeInstalla
tion

BridgeInstallation
[*]

Relates the installation objects to the Bridge or BridgePart.

bridgeFurnitu
re

BridgeFurniture [*] Relates the furniture objects to the Bridge or BridgePart.

bridgeRoom BridgeRoom [*] Relates the rooms to the Bridge or BridgePart.

address Address [*] Relates the addresses to the Bridge or BridgePart.

Attribute Value type and
multiplicity

Definition

class BridgeClassValue
[0..1]

Indicates the specific type of the Bridge or BridgePart.

function BridgeFunctionVal
ue [0..*]

Specifies the intended purposes of the Bridge or BridgePart.

usage BridgeUsageValue
[0..*]

Specifies the actual uses of the Bridge or BridgePart.

isMovable Boolean [0..1] Indicates whether the Bridge or BridgePart can be moved to
allow for watercraft to pass.

adeOfAbstract
Bridge

ADEOfAbstractBrid
ge [0..*]

Augments AbstractBridge with properties defined in an ADE.

272

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

Bridge

 Definition: A Bridge represents a structure that affords the passage of pedestrians,
animals, vehicles, and service(s) above obstacles or between two points at a
height above ground. [cf. ISO 6707-1]

 Subclass of: AbstractBridge

 Stereotype: «TopLevelFeatureType»

Role name Target class and
multiplicity

Definition

bridgePart BridgePart [*] Relates the bridge parts to the Bridge.

Attribute Value type and
multiplicity

Definition

adeOfBridge ADEOfBridge [0..*] Augments the Bridge with properties defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

BridgeConstructiveElement

 Definition: A BridgeConstructiveElement is an element of a bridge which is essential
from a structural point of view. Examples are pylons, anchorages, slabs,
beams.

 Subclass of: AbstractConstructiveElement

 Stereotype: «FeatureType»

273

Attribute Value type and
multiplicity

Definition

class BridgeConstructive
ElementClassValue
[0..1]

Indicates the specific type of the BridgeConstructiveElement.

function BridgeConstructive
ElementFunctionV
alue [0..*]

Specifies the intended purposes of the
BridgeConstructiveElement.

usage BridgeConstructive
ElementUsageValue
[0..*]

Specifies the actual uses of the BridgeConstructiveElement.

adeOfBridgeC
onstructiveEle
ment

ADEOfBridgeConstr
uctiveElement [0..*]

Augments the BridgeConstructiveElement with properties
defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

BridgeFurniture

 Definition: A BridgeFurniture is an equipment for occupant use, usually not fixed to the
bridge. [cf. ISO 6707-1]

 Subclass of: AbstractFurniture

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

class BridgeFurnitureCla
ssValue [0..1]

Indicates the specific type of the BridgeFurniture.

function BridgeFurnitureFu
nctionValue [0..*]

Specifies the intended purposes of the BridgeFurniture.

usage BridgeFurnitureUs
ageValue [0..*]

Specifies the actual uses of the BridgeFurniture.

adeOfBridgeF
urniture

ADEOfBridgeFurnit
ure [0..*]

Augments the BridgeFurniture with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

BridgeInstallation

274

 Definition: A BridgeInstallation is a permanent part of a Bridge (inside and/or outside)
which does not have the significance of a BridgePart. In contrast to
BridgeConstructiveElements, a BridgeInstallation is not essential from a
structural point of view. Examples are stairs, antennas or railways.

 Subclass of: AbstractInstallation

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

class BridgeInstallationC
lassValue [0..1]

Indicates the specific type of the BridgeInstallation.

function BridgeInstallationF
unctionValue [0..*]

Specifies the intended purposes of the BridgeInstallation.

usage BridgeInstallationU
sageValue [0..*]

Specifies the actual uses of the BridgeInstallation.

adeOfBridgeI
nstallation

ADEOfBridgeInstall
ation [0..*]

Augments the BridgeInstallation with properties defined in
an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

BridgePart

 Definition: A BridgePart is a physical or functional subdivision of a Bridge. It would be
considered a Bridge, if it were not part of a collection of other BridgeParts.

 Subclass of: AbstractBridge

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

adeOfBridgeP
art

ADEOfBridgePart
[0..*]

Augments the BridgePart with properties defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

BridgeRoom

275

 Definition: A BridgeRoom is a space within a Bridge or BridgePart intended for human
occupancy (e.g. a place of work or recreation) and/or containment (storage) of
animals or things. A BridgeRoom is bounded physically and/or virtually (e.g.
by ClosureSurfaces or GenericSurfaces).

 Subclass of: AbstractUnoccupiedSpace

 Stereotype: «FeatureType»

Role name Target class and
multiplicity

Definition

bridgeInstalla
tion

BridgeInstallation
[*]

Relates to the installation objects to the BridgeRoom.

boundary AbstractThematicS
urface [*]

Relates to the surfaces that bound the BridgeRoom. This
relation is inherited from the Core module.

bridgeFurnitu
re

BridgeFurniture [*] Relates the furniture objects to the BridgeRoom.

Attribute Value type and
multiplicity

Definition

class BridgeRoomClassV
alue [0..1]

Indicates the specific type of the BridgeRoom.

function BridgeRoomFuncti
onValue [0..*]

Specifies the intended purposes of the BridgeRoom.

usage BridgeRoomUsageV
alue [0..*]

Specifies the actual uses of the BridgeRoom.

adeOfBridgeR
oom

ADEOfBridgeRoom
[0..*]

Augments the BridgeRoom with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

9.16.2. Data Types

ADEOfAbstractBridge

 Definition: ADEOfAbstractBridge acts as a hook to define properties within an ADE that
are to be added to AbstractBridge.

 Subclass of: None

 Stereotype: «DataType»

276

ADEOfBridge

 Definition: ADEOfBridge acts as a hook to define properties within an ADE that are to be
added to a Bridge.

 Subclass of: None

 Stereotype: «DataType»

ADEOfBridgeConstructiveElement

 Definition: ADEOfBridgeConstructiveElement acts as a hook to define properties within
an ADE that are to be added to a BridgeConstructiveElement.

 Subclass of: None

 Stereotype: «DataType»

ADEOfBridgeFurniture

 Definition: ADEOfBridgeFurniture acts as a hook to define properties within an ADE that
are to be added to a BridgeFurniture.

 Subclass of: None

 Stereotype: «DataType»

ADEOfBridgeInstallation

 Definition: ADEOfBridgeInstallation acts as a hook to define properties within an ADE
that are to be added to a BridgeInstallation.

 Subclass of: None

 Stereotype: «DataType»

ADEOfBridgePart

 Definition: ADEOfBridgePart acts as a hook to define properties within an ADE that are
to be added to a BridgePart.

 Subclass of: None

 Stereotype: «DataType»

277

ADEOfBridgeRoom

 Definition: ADEOfBridgeRoom acts as a hook to define properties within an ADE that are
to be added to a BridgeRoom.

 Subclass of: None

 Stereotype: «DataType»

9.16.3. Basic Types

none

9.16.4. Unions

none

9.16.5. Code Lists

BridgeClassValue

 Definition: BridgeClassValue is a code list used to further classify a Bridge.

 Stereotype: «CodeList»

BridgeConstructiveElementClassValue

 Definition: BridgeConstructiveElementClassValue is a code list used to further classify a
BridgeConstructiveElement.

 Stereotype: «CodeList»

BridgeConstructiveElementFunctionValue

 Definition: BridgeConstructiveElementFunctionValue is a code list that enumerates the
different purposes of a BridgeConstructiveElement.

 Stereotype: «CodeList»

BridgeConstructiveElementUsageValue

278

 Definition: BridgeConstructiveElementUsageValue is a code list that enumerates the
different uses of a BridgeConstructiveElement.

 Stereotype: «CodeList»

BridgeFunctionValue

 Definition: BridgeFunctionValue is a code list that enumerates the different purposes of a
Bridge.

 Stereotype: «CodeList»

BridgeFurnitureClassValue

 Definition: BridgeFurnitureClassValue is a code list used to further classify a
BridgeFurniture.

 Stereotype: «CodeList»

BridgeFurnitureFunctionValue

 Definition: BridgeFurnitureFunctionValue is a code list that enumerates the different
purposes of a BridgeFurniture.

 Stereotype: «CodeList»

BridgeFurnitureUsageValue

 Definition: BridgeFurnitureUsageValue is a code list that enumerates the different uses
of a BridgeFurniture.

 Stereotype: «CodeList»

BridgeInstallationClassValue

 Definition: BridgeInstallationClassValue is a code list used to further classify a
BridgeInstallation.

 Stereotype: «CodeList»

BridgeInstallationFunctionValue

279

 Definition: BridgeInstallationFunctionValue is a code list that enumerates the different
purposes of a BridgeInstallation.

 Stereotype: «CodeList»

BridgeInstallationUsageValue

 Definition: BridgeInstallationUsageValue is a code list that enumerates the different uses
of a BridgeInstallation.

 Stereotype: «CodeList»

BridgeRoomClassValue

 Definition: BridgeRoomClassValue is a code list used to further classify a BridgeRoom.

 Stereotype: «CodeList»

BridgeRoomFunctionValue

 Definition: BridgeRoomFunctionValue is a code list that enumerates the different
purposes of a BridgeRoom.

 Stereotype: «CodeList»

BridgeRoomUsageValue

 Definition: BridgeRoomUsageValue is a code list that enumerates the different uses of a
BridgeRoom.

 Stereotype: «CodeList»

BridgeUsageValue

 Definition: BridgeUsageValue is a code list that enumerates the different uses of a Bridge.

 Stereotype: «CodeList»

9.16.6. Enumerations

none

280

9.17. Building

 Description: The Building module supports representation of thematic and spatial aspects
of buildings, building parts, building installations, building subdivisions, and
interior building structures.

 Parent Package: CityGML

 Stereotype: «ApplicationSchema»

9.17.1. Classes

AbstractBuilding

 Definition: AbstractBuilding is an abstract superclass representing the common
attributes and associations of the classes Building and BuildingPart.

 Subclass of: AbstractConstruction

 Stereotype: «FeatureType»

Role name Target class and
multiplicity

Definition

buildingFurni
ture

BuildingFurniture
[*]

Relates the furniture objects to the Building or BuildingPart.

buildingRoom BuildingRoom [*] Relates the rooms to the Building or BuildingPart.

buildingInstal
lation

BuildingInstallatio
n [*]

Relates the installation objects to the Building or
BuildingPart.

buildingSubdi
vision

AbstractBuildingSu
bdivision [*]

Relates the logical subdivisions to the Building or
BuildingPart.

buildingConst
ructiveEleme
nt

BuildingConstructi
veElement [*]

Relates the constructive elements to the Building or
BuildingPart.

address Address [*] Relates the addresses to the Building or BuildingPart.

281

Attribute Value type and
multiplicity

Definition

class BuildingClassValue
[0..1]

Indicates the specific type of the Building or BuildingPart.

function BuildingFunctionV
alue [0..*]

Specifies the intended purposes of the Building or
BuildingPart.

usage BuildingUsageValu
e [0..*]

Specifies the actual uses of the Building or BuildingPart.

roofType RoofTypeValue
[0..1]

Indicates the shape of the roof of the Building or
BuildingPart.

storeysAbove
Ground

Integer [0..1] Indicates the number of storeys positioned above ground
level.

storeysBelow
Ground

Integer [0..1] Indicates the number of storeys positioned below ground
level.

storeyHeights
AboveGround

MeasureOrNilReas
onList [0..1]

Lists the heights of each storey above ground. The first value
in the list denotes the height of the storey closest to the
ground level, the last value denotes the height furthest away.

storeyHeights
BelowGround

MeasureOrNilReas
onList [0..1]

Lists the height of each storey below ground. The first value
in the list denotes the height of the storey closest to the
ground level, the last value denotes the height furthest away.

adeOfAbstract
Building

ADEOfAbstractBuil
ding [0..*]

Augments AbstractBuilding with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

AbstractBuildingSubdivision

 Definition: AbstractBuildingSubdivision is the abstract superclass for different kinds of
logical building subdivisions.

 Subclass of: AbstractLogicalSpace

 Stereotype: «FeatureType»

282

Role name Target class and
multiplicity

Definition

buildingRoom BuildingRoom [*] Relates the rooms to the building subdivision.

buildingFurni
ture

BuildingFurniture
[*]

Relates the furniture objects to the building subdivision.

buildingConst
ructiveEleme
nt

BuildingConstructi
veElement [*]

Relates the constructive elements to the building subdivision.

buildingInstal
lation

BuildingInstallatio
n [*]

Relates the installation objects to the building subdivision.

Attribute Value type and
multiplicity

Definition

class BuildingSubdivisio
nClassValue [0..1]

Indicates the specific type of the building subdivision.

function BuildingSubdivisio
nFunctionValue
[0..*]

Specifies the intended purposes of the building subdivision.

usage BuildingSubdivisio
nUsageValue [0..*]

Specifies the actual uses of the building subdivision.

elevation Elevation [0..*] Specifies qualified elevations of the building subdivision in
relation to a well-defined surface which is commonly taken
as origin (e.g. geoid or water level). [cf. INSPIRE]

sortKey Real [0..1] Defines an order among the objects that belong to the
building subdivision. An example is the sorting of storeys.

adeOfAbstract
BuildingSubdi
vision

ADEOfAbstractBuil
dingSubdivision
[0..*]

Augments AbstractBuildingSubdivision with properties
defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

Building

283

 Definition: A Building is a free-standing, self-supporting construction that is roofed,
usually walled, and can be entered by humans and is normally designed to
stand permanently in one place. It is intended for human occupancy (e.g. a
place of work or recreation), habitation and/or shelter of humans, animals or
things.

 Subclass of: AbstractBuilding

 Stereotype: «TopLevelFeatureType»

Role name Target class and
multiplicity

Definition

buildingPart BuildingPart [*] Relates the building parts to the Building.

Attribute Value type and
multiplicity

Definition

adeOfBuilding ADEOfBuilding
[0..*]

Augments the Building with properties defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

BuildingConstructiveElement

 Definition: A BuildingConstructiveElement is an element of a Building which is essential
from a structural point of view. Examples are walls, slabs, staircases, beams.

 Subclass of: AbstractConstructiveElement

 Stereotype: «FeatureType»

284

Attribute Value type and
multiplicity

Definition

class BuildingConstructi
veElementClassVal
ue [0..1]

Indicates the specific type of the
BuildingConstructiveElement.

function BuildingConstructi
veElementFunction
Value [0..*]

Specifies the intended purposes of the
BuildingConstructiveElement.

usage BuildingConstructi
veElementUsageVa
lue [0..*]

Specifies the actual uses of the BuildingConstructiveElement.

adeOfBuilding
ConstructiveE
lement

ADEOfBuildingCon
structiveElement
[0..*]

Augments the BuildingConstructiveElement with properties
defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

BuildingFurniture

 Definition: A BuildingFurniture is an equipment for occupant use, usually not fixed to
the building. [cf. ISO 6707-1]

 Subclass of: AbstractFurniture

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

class BuildingFurnitureC
lassValue [0..1]

Indicates the specific type of the BuildingFurniture.

function BuildingFurnitureF
unctionValue [0..*]

Specifies the intended purposes of the BuildingFurniture.

usage BuildingFurnitureU
sageValue [0..*]

Specifies the actual uses of the BuildingFurniture.

adeOfBuilding
Furniture

ADEOfBuildingFur
niture [0..*]

Augments the BuildingFurniture with properties defined in
an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

BuildingInstallation

285

 Definition: A BuildingInstallation is a permanent part of a Building (inside and/or
outside) which has not the significance of a BuildingPart. Examples are stairs,
antennas, balconies or small roofs.

 Subclass of: AbstractInstallation

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

class BuildingInstallatio
nClassValue [0..1]

Indicates the specific type of the BuildingInstallation.

function BuildingInstallatio
nFunctionValue
[0..*]

Specifies the intended purposes of the BuildingInstallation.

usage BuildingInstallatio
nUsageValue [0..*]

Specifies the actual uses of the BuildingInstallation.

adeOfBuilding
Installation

ADEOfBuildingInst
allation [0..*]

Augments the BuildingInstallation with properties defined in
an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

BuildingPart

 Definition: A BuildingPart is a physical or functional subdivision of a Building. It would
be considered a Building, if it were not part of a collection of other
BuildingParts.

 Subclass of: AbstractBuilding

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

adeOfBuilding
Part

ADEOfBuildingPart
[0..*]

Augments the BuildingPart with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

BuildingRoom

286

 Definition: A BuildingRoom is a space within a Building or BuildingPart intended for
human occupancy (e.g. a place of work or recreation) and/or containment of
animals or things. A BuildingRoom is bounded physically and/or virtually
(e.g. by ClosureSurfaces or GenericSurfaces).

 Subclass of: AbstractUnoccupiedSpace

 Stereotype: «FeatureType»

Role name Target class and
multiplicity

Definition

buildingInstal
lation

BuildingInstallatio
n [*]

Relates the installation objects to the BuildingRoom.

buildingFurni
ture

BuildingFurniture
[*]

Relates the furniture objects to the BuildingRoom.

boundary AbstractThematicS
urface [*]

Relates to the surfaces that bound the BuildingRoom. This
relation is inherited from the Core module.

Attribute Value type and
multiplicity

Definition

class BuildingRoomClass
Value [0..1]

Indicates the specific type of the BuildingRoom.

function BuildingRoomFunc
tionValue [0..*]

Specifies the intended purposes of the BuildingRoom.

usage BuildingRoomUsag
eValue [0..*]

Specifies the actual uses of the BuildingRoom.

roomHeight RoomHeight [0..*] Specifies qualified heights of the BuildingRoom.

adeOfBuilding
Room

ADEOfBuildingRoo
m [0..*]

Augments the BuildingRoom with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

BuildingUnit

 Definition: A BuildingUnit is a logical subdivision of a Building. BuildingUnits are formed
according to some homogeneous property like function, ownership,
management, or accessability. They may be separately sold, rented out,
inherited, managed, etc.

 Subclass of: AbstractBuildingSubdivision

 Stereotype: «FeatureType»

287

Role name Target class and
multiplicity

Definition

storey Storey [*] Relates to the storeys on which the BuildingUnit is located.

address Address [*] Relates to the addresses that are assigned to the
BuildingUnit.

Attribute Value type and
multiplicity

Definition

adeOfBuilding
Unit

ADEOfBuildingUnit
[0..*]

Augments the BuildingUnit with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

Storey

 Definition: A Storey is typically a horizontal section of a Building. Storeys are not always
defined according to the building structure, but can also be defined according
to logical considerations.

 Subclass of: AbstractBuildingSubdivision

 Stereotype: «FeatureType»

Role name Target class and
multiplicity

Definition

boundary AbstractThematicS
urface [*]

Relates to the surfaces that bound the Storey. This relation is
inherited from the Core module.

buildingUnit BuildingUnit [*] Relates to the building units that belong to the Storey.

Attribute Value type and
multiplicity

Definition

adeOfStorey ADEOfStorey [0..*] Augments the Storey with properties defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

9.17.2. Data Types

288

ADEOfAbstractBuilding

 Definition: ADEOfAbstractBuilding acts as a hook to define properties within an ADE that
are to be added to AbstractBuilding.

 Subclass of: None

 Stereotype: «DataType»

ADEOfAbstractBuildingSubdivision

 Definition: ADEOfAbstractBuildingSubdivision acts as a hook to define properties within
an ADE that are to be added to AbstractBuildingSubdivision.

 Subclass of: None

 Stereotype: «DataType»

ADEOfBuilding

 Definition: ADEOfBuilding acts as a hook to define properties within an ADE that are to
be added to a Building.

 Subclass of: None

 Stereotype: «DataType»

ADEOfBuildingConstructiveElement

 Definition: ADEOfBuildingConstructiveElement acts as a hook to define properties within
an ADE that are to be added to a BuildingConstructiveElement.

 Subclass of: None

 Stereotype: «DataType»

ADEOfBuildingFurniture

 Definition: ADEOfBuildingFurniture acts as a hook to define properties within an ADE
that are to be added to a BuildingFurniture.

 Subclass of: None

 Stereotype: «DataType»

289

ADEOfBuildingInstallation

 Definition: ADEOfBuildingInstallation acts as a hook to define properties within an ADE
that are to be added to a BuildingInstallation.

 Subclass of: None

 Stereotype: «DataType»

ADEOfBuildingPart

 Definition: ADEOfBuildingPart acts as a hook to define properties within an ADE that are
to be added to a BuildingPart.

 Subclass of: None

 Stereotype: «DataType»

ADEOfBuildingRoom

 Definition: ADEOfBuildingRoom acts as a hook to define properties within an ADE that
are to be added to a BuildingRoom.

 Subclass of: None

 Stereotype: «DataType»

ADEOfBuildingUnit

 Definition: ADEOfBuildingUnit acts as a hook to define properties within an ADE that are
to be added to a BuildingUnit.

 Subclass of: None

 Stereotype: «DataType»

ADEOfStorey

 Definition: ADEOfStorey acts as a hook to define properties within an ADE that are to be
added to a Storey.

 Subclass of: None

 Stereotype: «DataType»

290

RoomHeight

 Definition: The RoomHeight represents a vertical distance (measured or estimated)
between a low reference and a high reference. [cf. INSPIRE]

 Subclass of: None

 Stereotype: «DataType»

Attribute Value type and
multiplicity

Definition

highReference RoomElevationRefe
renceValue [1..1]

Indicates the high point used to calculate the value of the
room height.

lowReference RoomElevationRefe
renceValue [1..1]

Indicates the low point used to calculate the value of the
room height.

status HeightStatusValue
[1..1]

Indicates the way the room height has been captured.

value Length [1..1] Specifies the value of the room height.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

9.17.3. Basic Types

none

9.17.4. Unions

none

9.17.5. Code Lists

BuildingClassValue

 Definition: BuildingClassValue is a code list used to further classify a Building.

 Stereotype: «CodeList»

BuildingConstructiveElementClassValue

 Definition: BuildingConstructiveElementClassValue is a code list used to further classify a
BuildingConstructiveElement.

 Stereotype: «CodeList»

291

BuildingConstructiveElementFunctionValue

 Definition: BuildingConstructiveElementFunctionValue is a code list that enumerates the
different purposes of a BuildingConstructiveElement.

 Stereotype: «CodeList»

BuildingConstructiveElementUsageValue

 Definition: BuildingConstructiveElementUsageValue is a code list that enumerates the
different uses of a BuildingConstructiveElement.

 Stereotype: «CodeList»

BuildingFunctionValue

 Definition: BuildingFunctionValue is a code list that enumerates the different purposes
of a Building.

 Stereotype: «CodeList»

BuildingFurnitureClassValue

 Definition: BuildingFurnitureClassValue is a code list used to further classify a
BuildingFurniture.

 Stereotype: «CodeList»

BuildingFurnitureFunctionValue

 Definition: BuildingFurnitureFunctionValue is a code list that enumerates the different
purposes of a BuildingFurniture.

 Stereotype: «CodeList»

BuildingFurnitureUsageValue

 Definition: BuildingFurnitureUsageValue is a code list that enumerates the different uses
of a BuildingFurniture.

 Stereotype: «CodeList»

292

BuildingInstallationClassValue

 Definition: BuildingInstallationClassValue is a code list used to further classify a
BuildingInstallation.

 Stereotype: «CodeList»

BuildingInstallationFunctionValue

 Definition: BuildingInstallationFunctionValue is a code list that enumerates the different
purposes of a BuildingInstallation.

 Stereotype: «CodeList»

BuildingInstallationUsageValue

 Definition: BuildingInstallationUsageValue is a code list that enumerates the different
uses of a BuildingInstallation.

 Stereotype: «CodeList»

BuildingRoomClassValue

 Definition: BuildingRoomClassValue is a code list used to further classify a
BuildingRoom.

 Stereotype: «CodeList»

BuildingRoomFunctionValue

 Definition: BuildingRoomFunctionValue is a code list that enumerates the different
purposes of a BuildingRoom.

 Stereotype: «CodeList»

BuildingRoomUsageValue

 Definition: BuildingRoomUsageValue is a code list that enumerates the different uses of a
BuildingRoom.

 Stereotype: «CodeList»

293

BuildingSubdivisionClassValue

 Definition: BuildingSubdivisionClassValue is a code list used to further classify a
BuildingSubdivision.

 Stereotype: «CodeList»

BuildingSubdivisionFunctionValue

 Definition: BuildingSubdivisionFunctionValue is a code list that enumerates the different
purposes of a BuildingSubdivision.

 Stereotype: «CodeList»

BuildingSubdivisionUsageValue

 Definition: BuildingSubdivisionUsageValue is a code list that enumerates the different
uses of a BuildingSubdivision.

 Stereotype: «CodeList»

BuildingUsageValue

 Definition: BuildingUsageValue is a code list that enumerates the different uses of a
Building.

 Stereotype: «CodeList»

RoofTypeValue

 Definition: RoofTypeValue is a code list that enumerates different roof types.

 Stereotype: «CodeList»

RoomElevationReferenceValue

 Definition: RoomElevationReferenceValue is a code list that enumerates the different
elevation reference levels used to measure room heights.

 Stereotype: «CodeList»

294

9.17.6. Enumerations

none

9.18. Tunnel

 Description: The Tunnel module supports representation of thematic and spatial aspects of
tunnels, tunnel parts, tunnel installations, and interior tunnel structures.

 Parent Package: CityGML

 Stereotype: «ApplicationSchema»

9.18.1. Classes

AbstractTunnel

 Definition: AbstractTunnel is an abstract superclass representing the common attributes
and associations of the classes Tunnel and TunnelPart.

 Subclass of: AbstractConstruction

 Stereotype: «FeatureType»

Role name Target class and
multiplicity

Definition

hollowSpace HollowSpace [*] Relates the hollow spaces to the Tunnel or TunnelPart.

tunnelConstru
ctiveElement

TunnelConstructive
Element [*]

Relates the constructive elements to the Tunnel or
TunnelPart.

tunnelInstalla
tion

TunnelInstallation
[*]

Relates the installation objects to the Tunnel or TunnelPart.

tunnelFurnitu
re

TunnelFurniture
[*]

Relates the furniture objects to the Tunnel or TunnelPart.

Attribute Value type and
multiplicity

Definition

class TunnelClassValue
[0..1]

Indicates the specific type of the Tunnel or TunnelPart.

function TunnelFunctionVal
ue [0..*]

Specifies the intended purposes of the Tunnel or TunnelPart.

usage TunnelUsageValue
[0..*]

Specifies the actual uses of the Tunnel or TunnelPart.

adeOfAbstract
Tunnel

ADEOfAbstractTun
nel [0..*]

Augments AbstractTunnel with properties defined in an ADE.

295

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

HollowSpace

 Definition: A HollowSpace is a space within a Tunnel or TunnelPart intended for certain
functions (e.g. transport or passage ways, service rooms, emergency shelters).
A HollowSpace is bounded physically and/or virtually (e.g. by ClosureSurfaces
or GenericSurfaces).

 Subclass of: AbstractUnoccupiedSpace

 Stereotype: «FeatureType»

Role name Target class and
multiplicity

Definition

tunnelInstalla
tion

TunnelInstallation
[*]

Relates the installation objects to the HollowSpace.

tunnelFurnitu
re

TunnelFurniture
[*]

Relates the furniture objects to the HollowSpace.

boundary AbstractThematicS
urface [*]

Relates to the surfaces that bound the HollowSpace. This
relation is inherited from the Core module.

Attribute Value type and
multiplicity

Definition

class HollowSpaceClassV
alue [0..1]

Indicates the specific type of the HollowSpace.

function HollowSpaceFuncti
onValue [0..*]

Specifies the intended purposes of the HollowSpace.

usage HollowSpaceUsage
Value [0..*]

Specifies the actual uses of the HollowSpace.

adeOfHollowS
pace

ADEOfHollowSpace
[0..*]

Augments the HollowSpace with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

Tunnel

296

 Definition: A Tunnel represents a horizontal or sloping enclosed passage way of a certain
length, mainly underground or underwater. [cf. ISO 6707-1]

 Subclass of: AbstractTunnel

 Stereotype: «TopLevelFeatureType»

Role name Target class and
multiplicity

Definition

tunnelPart TunnelPart [*] Relates the tunnel parts to the Tunnel.

Attribute Value type and
multiplicity

Definition

adeOfTunnel ADEOfTunnel [0..*] Augments the Tunnel with properties defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

TunnelConstructiveElement

 Definition: A TunnelConstructiveElement is an element of a Tunnel which is essential
from a structural point of view. Examples are walls, slabs, beams.

 Subclass of: AbstractConstructiveElement

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

class TunnelConstructive
ElementClassValue
[0..1]

Indicates the specific type of the TunnelConstructiveElement.

function TunnelConstructive
ElementFunctionV
alue [0..*]

Specifies the intended purposes of the
TunnelConstructiveElement.

usage TunnelConstructive
ElementUsageValue
[0..*]

Specifies the actual uses of the TunnelConstructiveElement.

adeOfTunnelC
onstructiveEle
ment

ADEOfTunnelConst
ructiveElement
[0..*]

Augments the TunnelConstructiveElement with properties
defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

297

TunnelFurniture

 Definition: A TunnelFurniture is an equipment for occupant use, usually not fixed to the
tunnel. [cf. ISO 6707-1]

 Subclass of: AbstractFurniture

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

class TunnelFurnitureCl
assValue [0..1]

Indicates the specific type of the TunnelFurniture.

function TunnelFurnitureFu
nctionValue [0..*]

Specifies the intended purposes of the TunnelFurniture.

usage TunnelFurnitureUs
ageValue [0..*]

Specifies the actual uses of the TunnelFurniture.

adeOfTunnelF
urniture

ADEOfTunnelFurni
ture [0..*]

Augments the TunnelFurniture with properties defined in an
ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

TunnelInstallation

 Definition: A TunnelInstallation is a permanent part of a Tunnel (inside and/or outside)
which does not have the significance of a TunnelPart. In contrast to
TunnelConstructiveElement, a TunnelInstallation is not essential from a
structural point of view. Examples are stairs, antennas or railings.

 Subclass of: AbstractInstallation

 Stereotype: «FeatureType»

298

Attribute Value type and
multiplicity

Definition

class TunnelInstallation
ClassValue [0..1]

Indicates the specific type of the TunnelInstallation.

function TunnelInstallation
FunctionValue
[0..*]

Specifies the intended purposes of the TunnelInstallation.

usage TunnelInstallation
UsageValue [0..*]

Specifies the actual uses of the TunnelInstallation.

adeOfTunnelI
nstallation

ADEOfTunnelInstal
lation [0..*]

Augments the TunnelInstallation with properties defined in
an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

TunnelPart

 Definition: A TunnelPart is a physical or functional subdivision of a Tunnel. It would be
considered a Tunnel, if it were not part of a collection of other TunnelParts.

 Subclass of: AbstractTunnel

 Stereotype: «FeatureType»

Attribute Value type and
multiplicity

Definition

adeOfTunnelP
art

ADEOfTunnelPart
[0..*]

Augments the TunnelPart with properties defined in an ADE.

Note: Unless otherwise specified, all attributes and role names have the stereotype «Property».

9.18.2. Data Types

ADEOfAbstractTunnel

 Definition: ADEOfAbstractTunnel acts as a hook to define properties within an ADE that
are to be added to AbstractTunnel.

 Subclass of: None

 Stereotype: «DataType»

299

ADEOfHollowSpace

 Definition: ADEOfHollowSpace acts as a hook to define properties within an ADE that are
to be added to a HollowSpace.

 Subclass of: None

 Stereotype: «DataType»

ADEOfTunnel

 Definition: ADEOfTunnel acts as a hook to define properties within an ADE that are to be
added to a Tunnel.

 Subclass of: None

 Stereotype: «DataType»

ADEOfTunnelConstructiveElement

 Definition: ADEOfTunnelConstructiveElement acts as a hook to define properties within
an ADE that are to be added to a TunnelConstructiveElement.

 Subclass of: None

 Stereotype: «DataType»

ADEOfTunnelFurniture

 Definition: ADEOfTunnelFurniture acts as a hook to define properties within an ADE that
are to be added to a TunnelFurniture.

 Subclass of: None

 Stereotype: «DataType»

ADEOfTunnelInstallation

 Definition: ADEOfTunnelInstallation acts as a hook to define properties within an ADE
that are to be added to a TunnelInstallation.

 Subclass of: None

 Stereotype: «DataType»

300

ADEOfTunnelPart

 Definition: ADEOfTunnelPart acts as a hook to define properties within an ADE that are
to be added to a TunnelPart.

 Subclass of: None

 Stereotype: «DataType»

9.18.3. Basic Types

none

9.18.4. Unions

none

9.18.5. Code Lists

HollowSpaceClassValue

 Definition: HollowSpaceClassValue is a code list used to further classify a HollowSpace.

 Stereotype: «CodeList»

HollowSpaceFunctionValue

 Definition: HollowSpaceFunctionValue is a code list that enumerates the different
purposes of a HollowSpace.

 Stereotype: «CodeList»

HollowSpaceUsageValue

 Definition: HollowSpaceUsageValue is a code list that enumerates the different uses of a
HollowSpace.

 Stereotype: «CodeList»

TunnelClassValue

 Definition: TunnelClassValue is a code list used to further classify a Tunnel.

 Stereotype: «CodeList»

301

TunnelConstructiveElementClassValue

 Definition: TunnelConstructiveElementClassValue is a code list used to further classify a
TunnelConstructiveElement.

 Stereotype: «CodeList»

TunnelConstructiveElementFunctionValue

 Definition: TunnelConstructiveElementFunctionValue is a code list that enumerates the
different purposes of a TunnelConstructiveElement.

 Stereotype: «CodeList»

TunnelConstructiveElementUsageValue

 Definition: TunnelConstructiveElementUsageValue is a code list that enumerates the
different uses of a TunnelConstructiveElement.

 Stereotype: «CodeList»

TunnelFunctionValue

 Definition: TunnelFunctionValue is a code list that enumerates the different purposes of
a Tunnel.

 Stereotype: «CodeList»

TunnelFurnitureClassValue

 Definition: TunnelFurnitureClassValue is a code list used to further classify a
TunnelFurniture.

 Stereotype: «CodeList»

TunnelFurnitureFunctionValue

 Definition: TunnelFurnitureFunctionValue is a code list that enumerates the different
purposes of a TunnelFurniture.

 Stereotype: «CodeList»

302

TunnelFurnitureUsageValue

 Definition: TunnelFurnitureUsageValue is a code list that enumerates the different uses
of a TunnelFurniture.

 Stereotype: «CodeList»

TunnelInstallationClassValue

 Definition: TunnelInstallationClassValue is a code list used to further classify a
TunnelInstallation.

 Stereotype: «CodeList»

TunnelInstallationFunctionValue

 Definition: TunnelInstallationFunctionValue is a code list that enumerates the different
purposes of a TunnelInstallation.

 Stereotype: «CodeList»

TunnelInstallationUsageValue

 Definition: TunnelInstallationUsageValue is a code list that enumerates the different uses
of a TunnelInstallation.

 Stereotype: «CodeList»

TunnelUsageValue

 Definition: TunnelUsageValue is a code list that enumerates the different uses of a
Tunnel.

 Stereotype: «CodeList»

9.18.6. Enumerations

none

303

Chapter 10. Application Domain Extension
(ADE)
An Application Domain Extension (ADE) is a formal and systematic extension of the CityGML
Conceptual Model (CM) for a specific application or domain. The ADE is expressed in the form of a
UML conceptual model. The domain data is mapped to a set of additional classes, attributes, and
relations. ADEs may use elements from the CityGML CM to derive application-specific subclasses, to
inject additional properties, to associate application data with predefined CityGML content, or to
define value domains for attributes.

The ADE mechanism allows application-specific information to be aligned with the CityGML CM in
a well-structured and systematic way. By this means, CityGML can be extended to meet the
information needs of an application while at the same time preserving its concepts and semantic
structures. Moreover, and in contrast to generic city objects and attributes, application data can be
validated against the formal definition of an ADE to ensure semantic interoperability.

Previous versions of the CityGML Standard defined the ADE mechanism solely at the level of the
XML Schema encoding. With CityGML 3.0, ADEs become platform-independent models at a
conceptual level that can be mapped to multiple and different target encodings.

ADEs have successfully been implemented in practice and enable a wide range of applications and
use cases based on the CityGML Standard. An overview and discussion of existing ADEs is provided
in [Biljecki et al. 2018].

10.1. General Rules for ADEs
An ADE shall be defined as a UML conceptual model in accordance with the General Feature Model
and the rules for creating application schemas in UML as specified in ISO 19109 and the rules and
constraints for using UML to model geographic information as specified in ISO 19103. The UML
notations and stereotypes used in the CityGML conceptual model should also be applied to
corresponding model elements in an ADE.

Every ADE shall be organized into one or more UML packages having globally unique namespaces
and containing all UML model elements defined by the ADE. An ADE may additionally import and
use predefined classes from external conceptual UML models such as the CityGML modules or the
standardized schemas of the ISO 19100 series of International Standards.

10.2. Defining New ADE Model Elements
Following ISO 19109, the primary view of geospatial information and the core element of
application schemas is the feature. ADEs therefore typically extend CityGML by defining new
feature types appropriate to the application area together with additional content such as object
types, data types, code lists, and enumerations.

Every feature type in an ADE shall be derived either directly or indirectly from the CityGML root
feature type Core::AbstractFeature or, depending on its type and characteristics, from a more
appropriate subclass thereof. According to the general CityGML space concept, features

304

representing spaces or space boundaries shall be derived either directly or indirectly from
Core::AbstractSpace or Core::AbstractSpaceBoundary respectively. UML classes representing top-
level feature types shall use the «TopLevelFeatureType» stereotype.

In contrast to feature types, object types and data types are not required to be derived from a
predefined CityGML class unless explicitly stated otherwise.

ADE classes may have an unlimited number of attributes and associations in addition to those
inherited from their parents. Attributes can be modelled with either simple or complex data types.
To ensure semantic interoperability, the predefined types from CityGML or the standardized
schemas of the ISO 19100 series of International Standards should be used wherever appropriate.
This includes, amongst others, basic types from ISO/TS 19103, geometry and topology objects from
ISO 10107, and temporal geometry and topology objects from ISO 19108.

If a predefined type is not available, ADEs can either define their own data types or import data
types from external conceptual models. This explicitly includes the possibility of defining new
geometry types not offered by ISO 19107. Designers of an ADE should however note that software
might not be able to properly identify and consume such geometry types.

A feature type capturing a real-world feature with geometry should be derived either directly or
indirectly from Core::AbstractSpace or Core::AbstractSpaceBoundary. By this means, the CityGML
predefined spatial properties and the associated LOD concept are inherited and available for the
feature type. If, however, these superclasses are either inappropriate or lack a spatial property
required to represent the feature, an ADE may define new and additional spatial properties. If such
a spatial property should belong to one of the predefined LODs, then the property name shall start
with the prefix “lodX”, where X is to be replaced by an integer value between 0 and 3 indicating the
target LOD. This enables software to derive the LOD of the geometry.

Constraints on model elements should be expressed using a formal language such as the Object
Constraint Language (OCL). The ADE specifies the manner of application of constraints. However,
following the CityGML conceptual model, constraints should at least be expressed on ADE
subclasses of Core::AbstractSpace to limit the types of space boundaries (i.e., instances of
Core::AbstractSpaceBoundary) that may be used to model the boundary of a space object.

Illustrative examples for ADEs can be found in the CityGML 3.0 User Guide.

10.3. Augmenting CityGML Feature Types with
Additional ADE Properties
If a predefined CityGML feature type lacks one or more properties required for a specific
application, a feasible solution in CityGML 2.0 was to derive a new ADE feature type as subclass of
the CityGML class and to add the properties to this subclass. While conceptually clean, this
approach also faces drawbacks. If multiple ADEs require additional properties for the same
CityGML feature type, this will lead to many subclasses of this feature type in different ADE
namespaces. Information about the same real-world feature might therefore be spread over
various instances of the different feature classes in an encoding making it difficult for software to
consume the feature data.

305

For this reason, CityGML 3.0 provides a way to augment the predefined CityGML feature types with
additional properties from the ADE domain without the need for subclassing. Each CityGML feature
type has an extension attribute of name “adeOfFeatureTypeName” and type
“ADEOfFeatureTypeName”, where FeatureTypeName is replaced by the class name in which the
attribute is defined. For example, the Building::Building class offers the attribute adeOfBuilding of
type Building::ADEOfBuilding. Each of these extension attributes can occur zero to unlimited times,
and the attribute types are defined as abstract and empty data types.

If an ADE augments a specific CityGML feature type with additional ADE properties, the ADE shall
create a subclass of the corresponding abstract data type associated with the feature class. This
subclass shall also be defined as data type using the stereotype «DataType». The additional
application-specific attributes and associations are then modelled as properties of the ADE subclass.
This may include, amongst others, attributes with simple or complex data type, spatial properties or
associations to other object and feature types from the ADE or external models such as CityGML.

The predefined “ADEOfFeatureTypeName” data types are called “hooks” because they are used as
the head of a hierarchy of ADE subclasses attaching application-specific properties. When
subclassing the “hook” of a specific CityGML feature type in an ADE, the properties defined in the
subclass can be used for that feature type as well as for all directly or indirectly derived feature
types, including feature types defined in the same or another ADE.

Multiple distinct ADEs can use the “hook” mechanism to define additional ADE properties for the
same CityGML feature type. Since the “adeOfFeatureTypeName” attribute may occur multiple times,
the various ADE properties can be exchanged as part of the same CityGML feature instance in an
encoding. Software can therefore easily consume the default CityGML feature data plus the
additional properties from the different ADEs.

Content from unknown or unsupported ADEs may be ignored by an application or service
consuming an encoded CityGML model.

Designers of an ADE should favor using this “hook” mechanism over subclassing a CityGML feature
type when possible. If an ADE must enable other ADEs to augment its own feature types (so-called
ADE of an ADE), then it shall implement “hooks” for its feature types following the same schema
and naming concept as in the CityGML conceptual model.

The UML fragment in Figure 66 shows an example for using the "hook" mechanism. For more
details on this and other example ADEs, please see the CityGML 3.0 User Guide for an example ADE.

306

Figure 66. The CityGML feature type Building is augmented with additional ADE properties by defining the
data type EnergyProperties as a subclass of the ADE data type ADEOfBuilding.

10.4. Encoding of ADEs
This document only addresses the conceptual modelling of ADEs. Rules and constraints for
mapping a conceptual ADE model to a target encoding are expected to be defined in a
corresponding CityGML Encoding Standard. If supported, an ADE may provide additional mapping
rules and constraints in conformance with a corresponding CityGML Encoding Standard.

10.5. Requirements and Recommendations
The following requirements and recommendations specify how ADEs shall be used as an extension
capability to the CityGML Conceptual Model.

Requirements Class

http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-ade

Target type Conceptual Model

Dependency /req/req-class-core

10.5.1. UML

Any extension to the CityGML Conceptual Model should be a faithful continuation of the styles and
techniques used in that model. The following Requirements and Recommendations define a
"faithful continuation".

307

http://www.opengis.net/spec/CityGML-1/3.0/req/req-class-ade

Requirement 48 /req/ade/uml

An ADE SHALL be defined as conceptual model in UML in accordance with the
conceptual modelling framework of the ISO 19100 series of International Standards

A The UML model SHALL adhere to the General Feature Model as
specified in ISO 19109.

B The UML model SHALL adhere to rules and constraints for
application schemas as specified in ISO/TS 19103.

C Every ADE SHALL be organized into one or more UML packages
having globally unique namespaces and containing all UML
model elements defined by the ADE.

Recommendation 1 /rec/ade/uml

In addition to meeting the requirements for a CityGML ADE, an ADE should:

A The UML notations and stereotypes used in the CityGML
conceptual model SHOULD be applied to corresponding model
elements in an ADE.

B An ADE SHOULD import and use predefined classes from external
conceptual UML models such as the CityGML modules or the
standardized schemas of the ISO 19100 series of International
Standards.

10.5.2. Classes

The following Requirements and Recommendations define how CityGML classes should be
extended by an ADE.

Requirement 49 /req/ade/elements

ADEs typically extend CityGML by defining new Feature Types together with additional
content such as Object Types, Data Types, Code Lists, and Enumerations.

A Every Feature Type in an ADE SHALL be derived either directly or
indirectly from the CityGML root Feature Type
core:AbstractFeature or a subclass thereof.

B UML classes representing Top-Level Feature Types SHALL use the
«TopLevelFeatureType» stereotype.

C Features representing spaces or space boundaries SHALL be
derived either directly or indirectly from core:AbstractSpace or
core:AbstractSpaceBoundary respectively.

D An ADE may define new and additional spatial properties. If such
a spatial property should belong to a predefined LOD, then the
property name SHALL start with the prefix “lodX”, where X is an
integer value indicating the target LOD.

308

Recommendation
50

/rec/ade/elements

ADEs typically extend CityGML by defining new feature types together with additional
content such as object types, data types, code lists, and enumerations.

A ADEs SHOULD use the predefined types from CityGML or the
standardized schemas of the ISO 19100 series of International
Standards.

B Constraints on model elements SHOULD be expressed using a
formal language such as the Object Constraint Language (OCL).

C ADE subclasses of core:AbstractSpace SHOULD include constraints
to limit the boundaries of the space object.

10.5.3. Properties

The following Requirements define how to use the CityGML extension properties to add attributes
to an existing CityGML Feature Type.

Requirement 51 /req/ade/properties

Every Feature Type includes an extension property (hook) of type
“ADEOf<FeatureTypeName>” where <FeatureTypeName> is the name of that Feature
Type. To add an extension property to a Feature Type:

A The ADE SHALL create a subclass of the abstract data type
associated with the hook.

B This subclass SHALL be defined as a data type using the
stereotype «DataType».

C Application-specific attributes and associations SHALL be
modeled as properties of the ADE subclass.

309

Annex A: Abstract Test Suite (Normative)

A.1. Introduction
CityGML 3.0 is a Conceptual Model. Since it is agnostic to implementing technologies, an Executable
Test Script is not feasible. It becomes the responsibility of the Implementation Specifications to
provide evidence of conformance. This evidence should be provided as an annex to the
Implementation Specification document.

The test method specified in this ATS is manual inspection. Automated methods may be used where
they exist.

A.2. Conformance Class Core

Abstract Test 1 /ats/core/classes

Test Purpose To validate that the Implementation Specification correctly
implements the UML Classes defined in the Conceptual Model.

Requirement /req/core/classes

Test Method Manual Inspection

For each UML class defined or referenced in the Core Package:

A Validate that the Implementation Specification contains a data
element which represents the same concept as that defined for
the UML class.

B Validate that the data element has the same relationships with
other elements as those defined for the UML class. Validate that
those relationships have the same source, target, direction, roles,
and multiplicies as those documented in the Conceptual Model.

C Validate that the data element has the same properties (attributes)
as those specified for the UML class. Validate that those properties
have the same name, definition, type, and multiplicity of those
documented in the Conceptual Model.

D Validate that the properties of the data element include those of
all superclasses of the UML class as documented in the
Conceptual Model. Validate that those properties have the same
name, definition, type, and multiplicity of those documented in
the Conceptual Model

310

E Validate that the associations represented for the data element
include those of all superclasses of the UML class as documented
in the Conceptual Model. Validate that those representations have
the same source, target, roles, and multiplicity of those
documented in the Conceptual Model

F Validate that the Implementation Specification enforces all
constraints imposed on the UML class by the Conceptual Model

Abstract Test 2 /ats/Core/isorestrictions

Test Purpose To validate that none of the restrictions which the CityGML
Conceptual Model imposes on ISO classes are violated by an
Implementation Specification.

Requirement /req/Core/isorestrictions

Test Method Manual Inspection

A For each instance of the GM_Solid class, validate that there are no
interior boundaries associated with that instance.

B For each instance of a class descended from the GM_Solid class,
validate that there are no interior boundaries associated with that
instance.

Abstract Test 3 /ats/core/boundaries

Test Purpose To validate that the Implementation Specification does not specify
boundaries except as defined in the Conceptual Model.

Requirement /req/core/boundaries

Test Method Manual Inspection

For each UML class defined or referenced in the Core Package:

A Validate that the Implementation Specification does not specify
boundaries for the UML class except as specified in the
Conceptual Model.

Abstract Test 4 /ats/core/ade/use

Test Purpose To validate that Application Data Extensions are not used unless
conformance with the ADE Requirements Class can be
demonstrated.

Requirement /req/core/ade_use

311

Test Method Manual Inspection

If any ADE classes or properties are included in the Core Package:

A Validate that the Implementation Specification conforms with the
ADE Requirements Class.

A.3. Conformance Class Appearance

Abstract Test 5 /ats/appearance/classes

Test Purpose To validate that the Implementation Specification correctly
implements the UML Classes defined in the Conceptual Model.

Requirement /req/appearance/classes

Test Method Manual Inspection

For each UML class defined or referenced in the Appearance Package:

A Validate that the Implementation Specification contains a data
element which represents the same concept as that defined for
the UML class.

B Validate that the data element has the same relationships with
other elements as those defined for the UML class. Validate that
those relationships have the same source, target, direction, roles,
and multiplicies as those documented in the Conceptual Model.

C Validate that the data element has the same properties (attributes)
as those specified for the UML class. Validate that those properties
have the same name, definition, type, and multiplicity of those
documented in the Conceptual Model.

D Validate that the properties of the data element include those of
all superclasses of the UML class as documented in the
Conceptual Model. Validate that those properties have the same
name, definition, type, and multiplicity of those documented in
the Conceptual Model

E Validate that the associations represented for the data element
include those of all superclasses of the UML class as documented
in the Conceptual Model. Validate that those representations have
the same source, target, roles, and multiplicity of those
documented in the Conceptual Model

312

F Validate that the Implementation Specification enforces all
constraints imposed on the UML class by the Conceptual Model

Abstract Test 6 /ats/appearance/ade/use

Test Purpose To validate that Application Data Extensions are not used unless
conformance with the ADE Requirements Class can be
demonstrated.

Requirement /req/appearance/ade_use

Test Method Manual Inspection

If any ADE classes or properties are included in the Appearance Package:

A Validate that the Implementation Specification conforms with the
ADE Requirements Class.

A.4. Conformance Class CityFurniture

Abstract Test 7 /ats/cityfurniture/classes

Test Purpose To validate that the Implementation Specification correctly
implements the UML Classes defined in the Conceptual Model.

Requirement /req/cityfurniture/classes

Test Method Manual Inspection

For each UML class defined or referenced in the CityFurniture Package:

A Validate that the Implementation Specification contains a data
element which represents the same concept as that defined for
the UML class.

B Validate that the data element has the same relationships with
other elements as those defined for the UML class. Validate that
those relationships have the same source, target, direction, roles,
and multiplicies as those documented in the Conceptual Model.

C Validate that the data element has the same properties (attributes)
as those specified for the UML class. Validate that those properties
have the same name, definition, type, and multiplicity of those
documented in the Conceptual Model.

313

D Validate that the properties of the data element include those of
all superclasses of the UML class as documented in the
Conceptual Model. Validate that those properties have the same
name, definition, type, and multiplicity of those documented in
the Conceptual Model

E Validate that the associations represented for the data element
include those of all superclasses of the UML class as documented
in the Conceptual Model. Validate that those representations have
the same source, target, roles, and multiplicity of those
documented in the Conceptual Model

F Validate that the Implementation Specification enforces all
constraints imposed on the UML class by the Conceptual Model

Abstract Test 8 /ats/cityfurniture/boundaries

Test Purpose To validate that the Implementation Specification does not specify
boundaries except as defined in the Conceptual Model.

Requirement /req/cityfurniture/boundaries

Test Method Manual Inspection

For each UML class defined or referenced in the CityFurniture Package:

A Validate that the Implementation Specification does not specify
boundaries for the UML class except as specified in the
Conceptual Model.

Abstract Test 9 /ats/cityfurniture/ade/use

Test Purpose To validate that Application Data Extensions are not used unless
conformance with the ADE Requirements Class can be
demonstrated.

Requirement /req/cityfurniture/ade_use

Test Method Manual Inspection

If any ADE classes or properties are included in the CityFurniture Package:

A Validate that the Implementation Specification conforms with the
ADE Requirements Class.

A.5. Conformance Class CityObjectGroup

Abstract Test 10 /ats/cityobjectgroup/classes

314

Test Purpose To validate that the Implementation Specification correctly
implements the UML Classes defined in the Conceptual Model.

Requirement /req/cityobjectgroup/classes

Test Method Manual Inspection

For each UML class defined or referenced in the CityObjectGroup Package:

A Validate that the Implementation Specification contains a data
element which represents the same concept as that defined for
the UML class.

B Validate that the data element has the same relationships with
other elements as those defined for the UML class. Validate that
those relationships have the same source, target, direction, roles,
and multiplicies as those documented in the Conceptual Model.

C Validate that the data element has the same properties (attributes)
as those specified for the UML class. Validate that those properties
have the same name, definition, type, and multiplicity of those
documented in the Conceptual Model.

D Validate that the properties of the data element include those of
all superclasses of the UML class as documented in the
Conceptual Model. Validate that those properties have the same
name, definition, type, and multiplicity of those documented in
the Conceptual Model

E Validate that the associations represented for the data element
include those of all superclasses of the UML class as documented
in the Conceptual Model. Validate that those representations have
the same source, target, roles, and multiplicity of those
documented in the Conceptual Model

F Validate that the Implementation Specification enforces all
constraints imposed on the UML class by the Conceptual Model

Abstract Test 11 /ats/cityobjectgroup/boundaries

Test Purpose To validate that the Implementation Specification does not specify
boundaries except as defined in the Conceptual Model.

Requirement /req/cityobjectgroup/boundaries

Test Method Manual Inspection

For each UML class defined or referenced in the CityObjectGroup Package:

315

A Validate that the Implementation Specification does not specify
boundaries for the UML class except as specified in the
Conceptual Model.

Abstract Test 12 /ats/cityobjectgroup/ade/use

Test Purpose To validate that Application Data Extensions are not used unless
conformance with the ADE Requirements Class can be
demonstrated.

Requirement /req/cityobjectgroup/ade_use

Test Method Manual Inspection

If any ADE classes or properties are included in the CityObjectGroup Package:

A Validate that the Implementation Specification conforms with the
ADE Requirements Class.

A.6. Conformance Class Dynamizer

Abstract Test 13 /ats/dynamizer/classes

Test Purpose To validate that the Implementation Specification correctly
implements the UML Classes defined in the Conceptual Model.

Requirement /req/dynamizer/classes

Test Method Manual Inspection

For each UML class defined or referenced in the Dynamizer Package:

A Validate that the Implementation Specification contains a data
element which represents the same concept as that defined for
the UML class.

B Validate that the data element has the same relationships with
other elements as those defined for the UML class. Validate that
those relationships have the same source, target, direction, roles,
and multiplicies as those documented in the Conceptual Model.

C Validate that the data element has the same properties (attributes)
as those specified for the UML class. Validate that those properties
have the same name, definition, type, and multiplicity of those
documented in the Conceptual Model.

316

D Validate that the properties of the data element include those of
all superclasses of the UML class as documented in the
Conceptual Model. Validate that those properties have the same
name, definition, type, and multiplicity of those documented in
the Conceptual Model

E Validate that the associations represented for the data element
include those of all superclasses of the UML class as documented
in the Conceptual Model. Validate that those representations have
the same source, target, roles, and multiplicity of those
documented in the Conceptual Model

F Validate that the Implementation Specification enforces all
constraints imposed on the UML class by the Conceptual Model

Abstract Test 14 /ats/dynamizer/ade/use

Test Purpose To validate that Application Data Extensions are not used unless
conformance with the ADE Requirements Class can be
demonstrated.

Requirement /req/dynamizer/ade_use

Test Method Manual Inspection

If any ADE classes or properties are included in the Dynamizer Package:

A Validate that the Implementation Specification conforms with the
ADE Requirements Class.

A.7. Conformance Class Generics

Abstract Test 15 /ats/generics/classes

Test Purpose To validate that the Implementation Specification correctly
implements the UML Classes defined in the Conceptual Model.

Requirement /req/generics/classes

Test Method Manual Inspection

For each UML class defined or referenced in the Generics Package:

A Validate that the Implementation Specification contains a data
element which represents the same concept as that defined for
the UML class.

317

B Validate that the data element has the same relationships with
other elements as those defined for the UML class. Validate that
those relationships have the same source, target, direction, roles,
and multiplicies as those documented in the Conceptual Model.

C Validate that the data element has the same properties (attributes)
as those specified for the UML class. Validate that those properties
have the same name, definition, type, and multiplicity of those
documented in the Conceptual Model.

D Validate that the properties of the data element include those of
all superclasses of the UML class as documented in the
Conceptual Model. Validate that those properties have the same
name, definition, type, and multiplicity of those documented in
the Conceptual Model

E Validate that the associations represented for the data element
include those of all superclasses of the UML class as documented
in the Conceptual Model. Validate that those representations have
the same source, target, roles, and multiplicity of those
documented in the Conceptual Model

F Validate that the Implementation Specification enforces all
constraints imposed on the UML class by the Conceptual Model

Abstract Test 16 /ats/generics/boundaries

Test Purpose To validate that the Implementation Specification does not specify
boundaries except as defined in the Conceptual Model.

Requirement /req/generics/boundaries

Test Method Manual Inspection

For each UML class defined or referenced in the Generics Package:

A Validate that the Implementation Specification does not specify
boundaries for the UML class except as specified in the
Conceptual Model.

Abstract Test 17 /ats/generics/use

Test Purpose To validate that Generics are not used in a way that duplicates or
conflicts with feature classes or attributes defined in the
Conceptual Model..

Requirement /req/generics/use

Test Method Manual Inspection

318

For all Generics-based classes and attributes defined in the Implementation
Specification:

A Demonstrate that this class or attribute does not duplicate or
conflict with any classes or attributes defined in the Conceptual
Model.

Abstract Test 18 /ats/generics/ade/use

Test Purpose To validate that Application Data Extensions are not used unless
conformance with the ADE Requirements Class can be
demonstrated.

Requirement /req/generics/ade_use

Test Method Manual Inspection

If any ADE classes or properties are included in the Generics Package:

A Validate that the Implementation Specification conforms with the
ADE Requirements Class.

A.8. Conformance Class LandUse

Abstract Test 19 /ats/landuse/classes

Test Purpose To validate that the Implementation Specification correctly
implements the UML Classes defined in the Conceptual Model.

Requirement /req/landuse/classes

Test Method Manual Inspection

For each UML class defined or referenced in the LandUse Package:

A Validate that the Implementation Specification contains a data
element which represents the same concept as that defined for
the UML class.

B Validate that the data element has the same relationships with
other elements as those defined for the UML class. Validate that
those relationships have the same source, target, direction, roles,
and multiplicies as those documented in the Conceptual Model.

C Validate that the data element has the same properties (attributes)
as those specified for the UML class. Validate that those properties
have the same name, definition, type, and multiplicity of those
documented in the Conceptual Model.

319

D Validate that the properties of the data element include those of
all superclasses of the UML class as documented in the
Conceptual Model. Validate that those properties have the same
name, definition, type, and multiplicity of those documented in
the Conceptual Model

E Validate that the associations represented for the data element
include those of all superclasses of the UML class as documented
in the Conceptual Model. Validate that those representations have
the same source, target, roles, and multiplicity of those
documented in the Conceptual Model

F Validate that the Implementation Specification enforces all
constraints imposed on the UML class by the Conceptual Model

Abstract Test 20 /ats/landuse/ade/use

Test Purpose To validate that Application Data Extensions are not used unless
conformance with the ADE Requirements Class can be
demonstrated.

Requirement /req/landuse/ade_use

Test Method Manual Inspection

If any ADE classes or properties are included in the LandUse Package:

A Validate that the Implementation Specification conforms with the
ADE Requirements Class.

A.9. Conformance Class PointCloud

Abstract Test 21 /ats/pointcloud/classes

Test Purpose To validate that the Implementation Specification correctly
implements the UML Classes defined in the Conceptual Model.

Requirement /req/pointcloud/classes

Test Method Manual Inspection

For each UML class defined or referenced in the PointCloud Package:

A Validate that the Implementation Specification contains a data
element which represents the same concept as that defined for
the UML class.

320

B Validate that the data element has the same relationships with
other elements as those defined for the UML class. Validate that
those relationships have the same source, target, direction, roles,
and multiplicies as those documented in the Conceptual Model.

C Validate that the data element has the same properties (attributes)
as those specified for the UML class. Validate that those properties
have the same name, definition, type, and multiplicity of those
documented in the Conceptual Model.

D Validate that the properties of the data element include those of
all superclasses of the UML class as documented in the
Conceptual Model. Validate that those properties have the same
name, definition, type, and multiplicity of those documented in
the Conceptual Model

E Validate that the associations represented for the data element
include those of all superclasses of the UML class as documented
in the Conceptual Model. Validate that those representations have
the same source, target, roles, and multiplicity of those
documented in the Conceptual Model

F Validate that the Implementation Specification enforces all
constraints imposed on the UML class by the Conceptual Model

Abstract Test 22 /ats/pointcloud/ade/use

Test Purpose To validate that Application Data Extensions are not used unless
conformance with the ADE Requirements Class can be
demonstrated.

Requirement /req/pointcloud/ade_use

Test Method Manual Inspection

If any ADE classes or properties are included in the PointCloud Package:

A Validate that the Implementation Specification conforms with the
ADE Requirements Class.

A.10. Conformance Class Relief

Abstract Test 23 /ats/relief/classes

Test Purpose To validate that the Implementation Specification correctly
implements the UML Classes defined in the Conceptual Model.

321

Requirement /req/relief/classes

Test Method Manual Inspection

For each UML class defined or referenced in the Relief Package:

A Validate that the Implementation Specification contains a data
element which represents the same concept as that defined for
the UML class.

B Validate that the data element has the same relationships with
other elements as those defined for the UML class. Validate that
those relationships have the same source, target, direction, roles,
and multiplicies as those documented in the Conceptual Model.

C Validate that the data element has the same properties (attributes)
as those specified for the UML class. Validate that those properties
have the same name, definition, type, and multiplicity of those
documented in the Conceptual Model.

D Validate that the properties of the data element include those of
all superclasses of the UML class as documented in the
Conceptual Model. Validate that those properties have the same
name, definition, type, and multiplicity of those documented in
the Conceptual Model

E Validate that the associations represented for the data element
include those of all superclasses of the UML class as documented
in the Conceptual Model. Validate that those representations have
the same source, target, roles, and multiplicity of those
documented in the Conceptual Model

F Validate that the Implementation Specification enforces all
constraints imposed on the UML class by the Conceptual Model

Abstract Test 24 /ats/relief/ade/use

Test Purpose To validate that Application Data Extensions are not used unless
conformance with the ADE Requirements Class can be
demonstrated.

Requirement /req/relief/ade_use

Test Method Manual Inspection

If any ADE classes or properties are included in the Relief Package:

A Validate that the Implementation Specification conforms with the
ADE Requirements Class.

322

A.11. Conformance Class Transportation

Abstract Test 25 /ats/transportation/classes

Test Purpose To validate that the Implementation Specification correctly
implements the UML Classes defined in the Conceptual Model.

Requirement /req/transportation/classes

Test Method Manual Inspection

For each UML class defined or referenced in the Transportation Package:

A Validate that the Implementation Specification contains a data
element which represents the same concept as that defined for
the UML class.

B Validate that the data element has the same relationships with
other elements as those defined for the UML class. Validate that
those relationships have the same source, target, direction, roles,
and multiplicies as those documented in the Conceptual Model.

C Validate that the data element has the same properties (attributes)
as those specified for the UML class. Validate that those properties
have the same name, definition, type, and multiplicity of those
documented in the Conceptual Model.

D Validate that the properties of the data element include those of
all superclasses of the UML class as documented in the
Conceptual Model. Validate that those properties have the same
name, definition, type, and multiplicity of those documented in
the Conceptual Model

E Validate that the associations represented for the data element
include those of all superclasses of the UML class as documented
in the Conceptual Model. Validate that those representations have
the same source, target, roles, and multiplicity of those
documented in the Conceptual Model

F Validate that the Implementation Specification enforces all
constraints imposed on the UML class by the Conceptual Model

Abstract Test 26 /ats/transportation/boundaries

Test Purpose To validate that the Implementation Specification does not specify
boundaries except as defined in the Conceptual Model.

323

Requirement /req/transportation/boundaries

Test Method Manual Inspection

For each UML class defined or referenced in the Transportation Package:

A Validate that the Implementation Specification does not specify
boundaries for the UML class except as specified in the
Conceptual Model.

Abstract Test 27 /ats/transportation/ade/use

Test Purpose To validate that Application Data Extensions are not used unless
conformance with the ADE Requirements Class can be
demonstrated.

Requirement /req/transportation/ade_use

Test Method Manual Inspection

If any ADE classes or properties are included in the Transportation Package:

A Validate that the Implementation Specification conforms with the
ADE Requirements Class.

A.12. Conformance Class Vegetation

Abstract Test 28 /ats/vegetation/classes

Test Purpose To validate that the Implementation Specification correctly
implements the UML Classes defined in the Conceptual Model.

Requirement /req/vegetation/classes

Test Method Manual Inspection

For each UML class defined or referenced in the Vegetation Package:

A Validate that the Implementation Specification contains a data
element which represents the same concept as that defined for
the UML class.

B Validate that the data element has the same relationships with
other elements as those defined for the UML class. Validate that
those relationships have the same source, target, direction, roles,
and multiplicies as those documented in the Conceptual Model.

324

C Validate that the data element has the same properties (attributes)
as those specified for the UML class. Validate that those properties
have the same name, definition, type, and multiplicity of those
documented in the Conceptual Model.

D Validate that the properties of the data element include those of
all superclasses of the UML class as documented in the
Conceptual Model. Validate that those properties have the same
name, definition, type, and multiplicity of those documented in
the Conceptual Model

E Validate that the associations represented for the data element
include those of all superclasses of the UML class as documented
in the Conceptual Model. Validate that those representations have
the same source, target, roles, and multiplicity of those
documented in the Conceptual Model

F Validate that the Implementation Specification enforces all
constraints imposed on the UML class by the Conceptual Model

Abstract Test 29 /ats/vegetation/boundaries

Test Purpose To validate that the Implementation Specification does not specify
boundaries except as defined in the Conceptual Model.

Requirement /req/vegetation/boundaries

Test Method Manual Inspection

For each UML class defined or referenced in the Vegetation Package:

A Validate that the Implementation Specification does not specify
boundaries for the UML class except as specified in the
Conceptual Model.

Abstract Test 30 /ats/vegetation/ade/use

Test Purpose To validate that Application Data Extensions are not used unless
conformance with the ADE Requirements Class can be
demonstrated.

Requirement /req/vegetation/ade_use

Test Method Manual Inspection

If any ADE classes or properties are included in the Vegetation Package:

A Validate that the Implementation Specification conforms with the
ADE Requirements Class.

325

A.13. Conformance Class Versioning

Abstract Test 31 /ats/versioning/classes

Test Purpose To validate that the Implementation Specification correctly
implements the UML Classes defined in the Conceptual Model.

Requirement /req/versioning/classes

Test Method Manual Inspection

For each UML class defined or referenced in the Versioning Package:

A Validate that the Implementation Specification contains a data
element which represents the same concept as that defined for
the UML class.

B Validate that the data element has the same relationships with
other elements as those defined for the UML class. Validate that
those relationships have the same source, target, direction, roles,
and multiplicies as those documented in the Conceptual Model.

C Validate that the data element has the same properties (attributes)
as those specified for the UML class. Validate that those properties
have the same name, definition, type, and multiplicity of those
documented in the Conceptual Model.

D Validate that the properties of the data element include those of
all superclasses of the UML class as documented in the
Conceptual Model. Validate that those properties have the same
name, definition, type, and multiplicity of those documented in
the Conceptual Model

E Validate that the associations represented for the data element
include those of all superclasses of the UML class as documented
in the Conceptual Model. Validate that those representations have
the same source, target, roles, and multiplicity of those
documented in the Conceptual Model

F Validate that the Implementation Specification enforces all
constraints imposed on the UML class by the Conceptual Model

Abstract Test 32 /ats/versioning/ade/use

326

Test Purpose To validate that Application Data Extensions are not used unless
conformance with the ADE Requirements Class can be
demonstrated.

Requirement /req/versioning/ade_use

Test Method Manual Inspection

If any ADE classes or properties are included in the Versioning Package:

A Validate that the Implementation Specification conforms with the
ADE Requirements Class.

A.14. Conformance Class WaterBody

Abstract Test 33 /ats/waterbody/classes

Test Purpose To validate that the Implementation Specification correctly
implements the UML Classes defined in the Conceptual Model.

Requirement /req/waterbody/classes

Test Method Manual Inspection

For each UML class defined or referenced in the Waterbody Package:

A Validate that the Implementation Specification contains a data
element which represents the same concept as that defined for
the UML class.

B Validate that the data element has the same relationships with
other elements as those defined for the UML class. Validate that
those relationships have the same source, target, direction, roles,
and multiplicies as those documented in the Conceptual Model.

C Validate that the data element has the same properties (attributes)
as those specified for the UML class. Validate that those properties
have the same name, definition, type, and multiplicity of those
documented in the Conceptual Model.

D Validate that the properties of the data element include those of
all superclasses of the UML class as documented in the
Conceptual Model. Validate that those properties have the same
name, definition, type, and multiplicity of those documented in
the Conceptual Model

327

E Validate that the associations represented for the data element
include those of all superclasses of the UML class as documented
in the Conceptual Model. Validate that those representations have
the same source, target, roles, and multiplicity of those
documented in the Conceptual Model

F Validate that the Implementation Specification enforces all
constraints imposed on the UML class by the Conceptual Model

Abstract Test 34 /ats/waterbody/boundaries

Test Purpose To validate that the Implementation Specification does not specify
boundaries except as defined in the Conceptual Model.

Requirement /req/waterbody/boundaries

Test Method Manual Inspection

For each UML class defined or referenced in the Waterbody Package:

A Validate that the Implementation Specification does not specify
boundaries for the UML class except as specified in the
Conceptual Model.

Abstract Test 35 /ats/waterbody/ade/use

Test Purpose To validate that Application Data Extensions are not used unless
conformance with the ADE Requirements Class can be
demonstrated.

Requirement /req/waterbody/ade_use

Test Method Manual Inspection

If any ADE classes or properties are included in the Waterbody Package:

A Validate that the Implementation Specification conforms with the
ADE Requirements Class.

A.15. Conformance Class Construction

Abstract Test 36 /ats/construction/classes

Test Purpose To validate that the Implementation Specification correctly
implements the UML Classes defined in the Conceptual Model.

Requirement /req/construction/classes

Test Method Manual Inspection

For each UML class defined or referenced in the Construction Package:

328

A Validate that the Implementation Specification contains a data
element which represents the same concept as that defined for
the UML class.

B Validate that the data element has the same relationships with
other elements as those defined for the UML class. Validate that
those relationships have the same source, target, direction, roles,
and multiplicies as those documented in the Conceptual Model.

C Validate that the data element has the same properties (attributes)
as those specified for the UML class. Validate that those properties
have the same name, definition, type, and multiplicity of those
documented in the Conceptual Model.

D Validate that the properties of the data element include those of
all superclasses of the UML class as documented in the
Conceptual Model. Validate that those properties have the same
name, definition, type, and multiplicity of those documented in
the Conceptual Model

E Validate that the associations represented for the data element
include those of all superclasses of the UML class as documented
in the Conceptual Model. Validate that those representations have
the same source, target, roles, and multiplicity of those
documented in the Conceptual Model

F Validate that the Implementation Specification enforces all
constraints imposed on the UML class by the Conceptual Model

Abstract Test 37 /ats/construction/boundaries

Test Purpose To validate that the Implementation Specification does not specify
boundaries except as defined in the Conceptual Model.

Requirement /req/construction/boundaries

Test Method Manual Inspection

For each UML class defined or referenced in the Construction Package:

A Validate that the Implementation Specification does not specify
boundaries for the UML class except as specified in the
Conceptual Model.

Abstract Test 38 /ats/construction/ade/use

Test Purpose To validate that Application Data Extensions are not used unless
conformance with the ADE Requirements Class can be
demonstrated.

329

Requirement /req/construction/ade_use

Test Method Manual Inspection

If any ADE classes or properties are included in the Construction Package:

A Validate that the Implementation Specification conforms with the
ADE Requirements Class.

A.16. Conformance Class Bridge

Abstract Test 39 /ats/bridge/classes

Test Purpose To validate that the Implementation Specification correctly
implements the UML Classes defined in the Conceptual Model.

Requirement /req/bridge/classes

Test Method Manual Inspection

For each UML class defined or referenced in the Bridge Package:

A Validate that the Implementation Specification contains a data
element which represents the same concept as that defined for
the UML class.

B Validate that the data element has the same relationships with
other elements as those defined for the UML class. Validate that
those relationships have the same source, target, direction, roles,
and multiplicies as those documented in the Conceptual Model.

C Validate that the data element has the same properties (attributes)
as those specified for the UML class. Validate that those properties
have the same name, definition, type, and multiplicity of those
documented in the Conceptual Model.

D Validate that the properties of the data element include those of
all superclasses of the UML class as documented in the
Conceptual Model. Validate that those properties have the same
name, definition, type, and multiplicity of those documented in
the Conceptual Model

E Validate that the associations represented for the data element
include those of all superclasses of the UML class as documented
in the Conceptual Model. Validate that those representations have
the same source, target, roles, and multiplicity of those
documented in the Conceptual Model

330

F Validate that the Implementation Specification enforces all
constraints imposed on the UML class by the Conceptual Model

Abstract Test 40 /ats/bridge/boundaries

Test Purpose To validate that the Implementation Specification does not specify
boundaries except as defined in the Conceptual Model.

Requirement /req/bridge/boundaries

Test Method Manual Inspection

For each UML class defined or referenced in the Bridge Package:

A Validate that the Implementation Specification does not specify
boundaries for the UML class except as specified in the
Conceptual Model.

Abstract Test 41 /ats/bridge/ade/use

Test Purpose To validate that Application Data Extensions are not used unless
conformance with the ADE Requirements Class can be
demonstrated.

Requirement /req/bridge/ade_use

Test Method Manual Inspection

If any ADE classes or properties are included in the Bridge Package:

A Validate that the Implementation Specification conforms with the
ADE Requirements Class.

A.17. Conformance Class Building

Abstract Test 42 /ats/building/classes

Test Purpose To validate that the Implementation Specification correctly
implements the UML Classes defined in the Conceptual Model.

Requirement /req/building/classes

Test Method Manual Inspection

For each UML class defined or referenced in the Building Package:

A Validate that the Implementation Specification contains a data
element which represents the same concept as that defined for
the UML class.

331

B Validate that the data element has the same relationships with
other elements as those defined for the UML class. Validate that
those relationships have the same source, target, direction, roles,
and multiplicies as those documented in the Conceptual Model.

C Validate that the data element has the same properties (attributes)
as those specified for the UML class. Validate that those properties
have the same name, definition, type, and multiplicity of those
documented in the Conceptual Model.

D Validate that the properties of the data element include those of
all superclasses of the UML class as documented in the
Conceptual Model. Validate that those properties have the same
name, definition, type, and multiplicity of those documented in
the Conceptual Model

E Validate that the associations represented for the data element
include those of all superclasses of the UML class as documented
in the Conceptual Model. Validate that those representations have
the same source, target, roles, and multiplicity of those
documented in the Conceptual Model

F Validate that the Implementation Specification enforces all
constraints imposed on the UML class by the Conceptual Model

Abstract Test 43 /ats/building/boundaries

Test Purpose To validate that the Implementation Specification does not specify
boundaries except as defined in the Conceptual Model.

Requirement /req/building/boundaries

Test Method Manual Inspection

For each UML class defined or referenced in the Building Package:

A Validate that the Implementation Specification does not specify
boundaries for the UML class except as specified in the
Conceptual Model.

Abstract Test 44 /ats/building/ade/use

Test Purpose To validate that Application Data Extensions are not used unless
conformance with the ADE Requirements Class can be
demonstrated.

Requirement /req/building/ade_use

Test Method Manual Inspection

If any ADE classes or properties are included in the Building Package:

332

A Validate that the Implementation Specification conforms with the
ADE Requirements Class.

A.18. Conformance Class Tunnel

Abstract Test 45 /ats/tunnel/classes

Test Purpose To validate that the Implementation Specification correctly
implements the UML Classes defined in the Conceptual Model.

Requirement /req/tunnel/classes

Test Method Manual Inspection

For each UML class defined or referenced in the Tunnel Package:

A Validate that the Implementation Specification contains a data
element which represents the same concept as that defined for
the UML class.

B Validate that the data element has the same relationships with
other elements as those defined for the UML class. Validate that
those relationships have the same source, target, direction, roles,
and multiplicies as those documented in the Conceptual Model.

C Validate that the data element has the same properties (attributes)
as those specified for the UML class. Validate that those properties
have the same name, definition, type, and multiplicity of those
documented in the Conceptual Model.

D Validate that the properties of the data element include those of
all superclasses of the UML class as documented in the
Conceptual Model. Validate that those properties have the same
name, definition, type, and multiplicity of those documented in
the Conceptual Model

E Validate that the associations represented for the data element
include those of all superclasses of the UML class as documented
in the Conceptual Model. Validate that those representations have
the same source, target, roles, and multiplicity of those
documented in the Conceptual Model

F Validate that the Implementation Specification enforces all
constraints imposed on the UML class by the Conceptual Model

333

Abstract Test 46 /ats/tunnel/boundaries

Test Purpose To validate that the Implementation Specification does not specify
boundaries except as defined in the Conceptual Model.

Requirement /req/tunnel/boundaries

Test Method Manual Inspection

For each UML class defined or referenced in the Tunnel Package:

A Validate that the Implementation Specification does not specify
boundaries for the UML class except as specified in the
Conceptual Model.

Abstract Test 47 /ats/tunnel/ade/use

Test Purpose To validate that Application Data Extensions are not used unless
conformance with the ADE Requirements Class can be
demonstrated.

Requirement /req/tunnel/ade_use

Test Method Manual Inspection

If any ADE classes or properties are included in the Tunnel Package:

A Validate that the Implementation Specification conforms with the
ADE Requirements Class.

A.19. Conformance Class ADE

Abstract Test 48 /ats/ade/uml

Test Purpose To validate that Application Domain Extensions (ADE) to the
CityGML Conceptual Model are modeled correctly in UML.

Requirement /req/ade/uml

Test Method Manual Inspection

An ADE is defined as conceptual model in UML in accordance with the conceptual
modelling framework of the ISO 19100 series of International Standards

A Validate that the ADE UML model adheres to the General Feature
Model as specified in ISO 19109.

B Validate that the ADE UML model adheres to rules and constraints
for application schemas as specified in ISO/TS 19103.

334

C Validate that the ADE UML model is organized into one or more
UML packages having globally unique namespaces and
containing all UML model elements defined by the ADE.

Abstract Test 49 /ats/ade/elements

Test Purpose To validate that Application Domain Extension s (ADE) to the
CityGML Conceptual Model are implemented correctly.

Requirement /req/ade/elements

Test Method Manual Inspection

For each new UML class defined by an ADE:

A Validate that every Feature Type class in an ADE is derived either
directly or indirectly from the CityGML root Feature Type
core:AbstractFeature or a subclass thereof.

B Validate that every UML class in an ADE which represents a top-
level Feature Type is assigned the «TopLevelFeatureType»
stereotype.

C Validate that every UML class in an ADE which represents spaces
or space boundaries is derived either directly or indirectly from
core:AbstractSpace or core:AbstractSpaceBoundary respectively.

D Validate that any new or additional spatial properties defined by
an ADE:

1. belongs to a predefined LOD,

2. has a property name which starts with the prefix “lodX”,
where X is an integer value indicating the target LOD.

Abstract Test 50 /ats/ade/properties

Test Purpose To validate that Application Domain Extension s (ADE) to the
CityGML Conceptual Model implement extension properties
correctly.

Requirement /req/ade/properties

Test Method Manual Inspection

335

Every Feature Type in the CityGML Conceptual Model includes an extension property
whos' purpose is to allow an ADE to add properties to that existing Feature Type. In
every case where an extension property has been used:

A Validate that the ADE creates a subclass of the abstract data type
associated with the extension property.

B Validate that this subclass is defined as a data type using the
stereotype «DataType».

C Validate that all application-specific attributes and associations
for that Feature Type are modeled as properties of the ADE
subclass.

336

Annex B: Revision History
Date Release Editor Primary

clauses
modified

Description

2020-06-04 0.9.0 C. Heazel all Draft for review

2020-06-07 0.9.1 T. H. Kolbe Chapter 10 Bibliography
was added

2020-06-08 0.9.2 C. Nagel Chapter 10 Chapter on ADE
mechanism was
added

2020-06-11 0.9.3 T. H. Kolbe Chapter 7 Overview
chapter on
CityGML was
added

2020-06-11 0.9.4 T. Kutzner Chapter 0 List of
participants and
submitters was
added

2020-08-05 0.9.5 T. Kutzner Chapter 8 Boundary
constraints were
added

2020-08-05 0.9.6 C. Heazel, T.
Kutzner

Chapter 8 UML update

337

Annex C: Glossary
conformance test class
set of conformance test modules that must be applied to receive a single certificate of conformance
[OGC 08-131r3, definition 4.4]

feature
abstraction of real world phenomena
[ISO 19101-1:2014, definition 4.1.11]

feature attribute
characteristic of a feature
[ISO 19101-1:2014, definition 4.1.12]

feature type
class of features having common characteristics
[ISO 19156:2011, definition 4.7]

measurement
set of operations having the object of determining the value of a quantity
[ISO 19101-2:2018, definition 3.21] / [VIM:1993, 2.1]

model
abstraction of some aspects of reality
[ISO 19109:2015, definition 4.15]

observation
act of measuring or otherwise determining the value of a property
[ISO 19156:2011, definition 4.11]

observation procedure
method, algorithm or instrument, or system of these, which may be used in making an observation
[ISO 19156:2011, 4.12]

observation result
estimate of the value of a property determined through a known observation procedure
[ISO 19156:2011, 4.14]

property
facet or attribute of an object referenced by a name.
[ISO 19143:2010, definition 4.21]

requirements class
aggregate of all requirement modules that must all be satisfied to satisfy a conformance test class
[OGC 08-131r3, definition 4.19]

schema
formal description of a model
[ISO 19101-1:2014, definition 4.1.34]

338

sensor
type of observation procedure that provides the estimated value of an observed property at its
output
[OGC 08-094r1, definition 4.5]

Standardization Target
TBD

timeseries
sequence of data values which are ordered in time
[OGC 15-043r3]

universe of discourse
view of the real or hypothetical world that includes everything of interest
[ISO 19101-1:2014, definition 4.1.38]

version
Particular variation of a spatial object
[INSPIRE Glossary]

C.1. ISO Concepts
The following concepts from the ISO TC211 Harmonized UML model are referenced by the CityGML
Conceptual UML model but do not play a major role in its' definition. They are provided here to
support a more complete understanding of the model.

Area
The measure of the physical extent of any topologically 2-D geometric object. Usually measured in
"square" units of length.
[ISO 19103:2015]

Boolean
boolean is the mathematical datatype associated with two-valued logic
[ISO 19103:2015]

CC_CoordinateOperation
mathematical operation on coordinates that transforms or converts coordinates to another
coordinate reference system.
[ISO 19111:2019]

Character
symbol from a standard character-set.
[ISO 19103:2015]

CharacterString
Characterstring is a family of datatypes which represent strings of symbols from standard
character-sets.
[ISO 19103:2015]

CRS

339

Coordinate reference system which is usually single but may be compound.
[ISO 19111:2019]

CV_DiscreteCoverage
A subclass of CV_Coverage that returns a single record of values for any direct position within a
single geometric object in its spatiotemporal domain.
[ISO 19123:2005]

CV_DomainObject
[ISO 19123:2005]

CV_GridPointValuePair
[ISO 19123:2005]

CV_GridValuesMatrix
The geometry represented by the various offset vectors is in the image plane of the grid.
[ISO 19123:2005]

CV_ReferenceableGrid
[ISO 19123:2005]

Date
Date gives values for year, month and day. Representation of Date is specified in ISO 8601.
Principles for date and time are further discussed in ISO 19108.
[ISO 19103:2015]

DateTime
A DateTime is a combination of a date and a time types. Representation of DateTime is specified in
ISO 8601. Principles for date and time are further discussed in ISO 19108.
[ISO 19103:2015]

Distance
Used as a type for returning distances and possibly lengths.
[ISO 19103:2015]

Engineering CRS
A contextually local coordinate reference system which can be divided into two broad categories:

1. earth-fixed systems applied to engineering activities on or near the surface of the earth;

2. CRSs on moving platforms such as road vehicles, vessels, aircraft or spacecraft.
[ISO 19111:2019]

Generic Name
Generic Name is the abstract class for all names in a NameSpace. Each instance of a GenericName is
either a LocalName or a ScopedName.
[ISO 19103:2015]

Geometry
[ISO 19107:2003]

340

GM_CompositePoint
[ISO 19107:2003]

GM_CompositeSolid
set of geometric solids adjoining one another along common boundary geometric surfaces
[ISO 19107:2003]

GM_GenericSurface
GM_Surface and GM_SurfacePatch both represent sections of surface geometry, and therefore share
a number of operation signatures. These are defined in the interface class GM_GenericSurface.
[ISO 19107:2003]

GM_LineString
consists of sequence of line segments, each having a parameterization like the one for
GM_LineSegment
[ISO 19107:2003]

GM_MultiPrimitive
[ISO 19107:2003]

GM_OrientableSurface
a surface and an orientation inherited from GM_OrientablePrimitive. If the orientation is "+", then
the GM_OrientableSurface is a GM_Surface. If the orientation is "-", then the GM_OrientableSurface
is a reference to a GM_Surface with an upNormal that reverses the direction for this
GM_OrientableSurface, the sense of "the top of the surface".
[ISO 19107:2003]

GM_PolyhedralSurface
a GM_Surface composed of polygon surfaces (GM_Polygon) connected along their common
boundary curves.
[ISO 19107:2003]

GM_Position
a union type consisting of either a DirectPosition or of a reference to a GM_Point from which a
DirectPosition shall be obtained.
[ISO 19107:2003]

GM_Primitive
The abstract root class of the geometric primitives. Its main purpose is to define the basic
"boundary" operation that ties the primitives in each dimension together.
[ISO 19107:2003]

Integer
An exact integer value, with no fractional part.
[ISO 19103:2015]

Internet of Things
The network of physical objects--“things”--that are embedded with sensors, software, and other
technologies for the purpose of connecting and exchanging data with other devices and systems
over the Internet.

341

Wikipedia

IO_IdentifiedObjectBase
[ISO 19103:2015]

Length
The measure of distance as an integral, i.e. the limit of an infinite sum of distances between points
on a curve.
[ISO 19103:2015]

Measure
The result from performing the act or process of ascertaining the extent, dimensions, or quantity of
some entity.
[ISO 19103:2015]

Number
The base type for all number data, giving the basic algebraic operations.
[ISO 19103:2015]

Point
GM_Point is the basic data type for a geometric object consisting of one and only one point.
[ISO 19107:2003]

Real
The common binary Real finite implementation using base 2.
[ISO 19103:2015]

RS_ReferenceSystem
Description of a spatial and temporal reference system used by a dataset.
[ISO 19111:2019]

Scoped Name
ScopedName is a composite of a LocalName for locating another NameSpace and a GenericName
valid in that NameSpace. ScopedName contains a LocalName as head and a GenericName, which
might be a LocalName or a ScopedName, as tail.
[ISO 19103:2015]

Solid
GM_Solid, a subclass of GM_Primitive, is the basis for 3-dimensional geometry. The extent of a solid
is defined by the boundary surfaces.
[ISO 19107:2003]

Time
Time is the designation of an instant on a selected time scale, astronomical or atomic. It is used in
the sense of time of day.
[ISO 19103:2015]

TM_Duration
[ISO 19108:2006]

342

https://en.wikipedia.org/wiki/Internet_of_things

TM_TemporalPosition
The position of a TM_Instant relative to a TM_ReferenceSystem.
[ISO 19108:2006]

Unit of Measure
Any of the systems devised to measure some physical quantity such distance or area or a system
devised to measure such things as the passage of time.
[ISO 19103:2015]

URI
Uniform Resource Identifier (URI), is a compact string of characters used to identify or name a
resource
[ISO 19103:2015]

Volume
Volume is the measure of the physical space of any 3-D geometric object.
[ISO 19103:2015]

C.2. Abbreviated Terms
• 2D Two Dimensional

• 3D Three Dimensional

• AEC Architecture, Engineering, Construction

• ALKIS German National Standard for Cadastral Information

• ATKIS German National Standard for Topographic and Cartographic Information

• BIM Building Information Modeling

• B-Rep Boundary Representation

• bSI buildingSMART International

• CAD Computer Aided Design

• COLLADA Collaborative Design Activity

• CSG Constructive Solid Geometry

• DTM Digital Terrain Model

• DXF Drawing Exchange Format

• EuroSDR European Spatial Data Research Organisation

• ESRI Environmental Systems Research Institute

• FM Facility Management

• GDF Geographic Data Files

• GDI-DE Spatial Data Infrastructure Germany (Geodateninfrastruktur Deutschland)

• GDI NRW Geodata Infrastructure North-Rhine Westphalia

• GML Geography Markup Language

343

• IAI International Alliance for Interoperability (now buildingSMART International (bSI))

• IETF Internet Engineering Task Force

• IFC Industry Foundation Classes

• IoT Internet of Things

• ISO International Organization for Standardisation

• ISO/TC211 ISO Technical Committee 211

• LOD Levels of Detail

• MQTT

• NBIMS National Building Information Model Standard

• OASIS Organisation for the Advancement of Structured Information Standards

• OGC Open Geospatial Consortium

• OSCRE Open Standards Consortium for Real Estate

• SIG 3D Special Interest Group 3D of the GDI-DE

• TIC Terrain Intersection Curve

• TIN Triangulated Irregular Network

• UML Unified Modeling Language

• URI Uniform Resource Identifier

• VRML Virtual Reality Modeling Language

• W3C World Wide Web Consortium

• W3DS OGC Web 3D Service

• WFS OGC Web Feature Service

• X3D Open Standards XML-enabled 3D file format of the Web 3D Consortium

• XML Extensible Markup Language

• xAL OASIS extensible Address Language

344

Annex D: Bibliography
• Open Geospatial Consortium: The Specification Model — A Standard for Modular

specifications, OGC 08-131

• Agugiaro, G., Benner, J., Cipriano, P., Nouvel, R., 2018: The Energy Application Domain
Extension for CityGML: enhancing interoperability for urban energy simulations. Open
Geospatial Data, Software and Standards, Vol. 3. https://doi.org/10.1186/s40965-018-0042-y

• Becker, T., Nagel, C., Kolbe, T. H., 2011: Integrated 3D Modeling of Multi-utility Networks and
their Interdependencies for Critical Infrastructure Analysis. In: T. H. Kolbe, G. König, C.
Nagel (Eds.): Advances in 3D Geoinformation Sciences. LNG&C, Springer, Berlin. https://doi.org/
10.1007/978-3-642-12670-3_1

• Beil, C., Kolbe, T. H., 2017: CityGML and the streets of New York - A proposal for detailed
street space modelling. In: Proceedings of the 12th International 3D GeoInfo Conference 2017,
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. IV-
4/W5, ISPRS. http://doi.org/10.5194/isprs-annals-IV-4-W5-9-2017

• Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., Çöltekin, A., 2015: Applications of 3D City
Models: State of the Art Review. ISPRS International Journal of Geo-Information, 4(4).
https://doi.org/10.3390/ijgi4042842

• Biljecki, F., Kumar, K., Nagel, C., 2018: CityGML Application Domain Extension (ADE):
overview of developments. Open Geospatial Data, Software and Standards, 3(1). https://doi.org/
10.1186/s40965-018-0055-6

• Billen, R., Zaki, C. E., Servières, M., Moreau, G., Hallot, P., 2012: Developing an ontology of
space: Application to 3D city modeling. In: Leduc, T., Moreau, G., Billen, R. (eds): Usage,
usability, and utility of 3D city models — European COST Action TU0801, EDP Sciences, Nantes,
Vol. 02007. https://hal.archives-ouvertes.fr/hal-01521445

• Chaturvedi, K., Smyth, C. S., Gesquière, G., Kutzner, T., Kolbe, T. H., 2015: Managing versions
and history within semantic 3D city models for the next generation of CityGML. In: Selected
papers from the 10th International 3DGeoInfo Conference 2015 in Kuala Lumpur, Malaysia,
Springer LNG&C, Berlin. https://doi.org/10.1007/978-3-319-25691-7_11

• Chaturvedi, K., Kolbe, T. H., 2016: Integrating Dynamic Data and Sensors with Semantic 3D
City Models in the context of Smart Cities. In: Proceedings of the 11th International 3D
Geoinfo Conference, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, Vol. IV-2/W1, ISPRS. https://doi.org/10.5194/isprs-annals-IV-2-W1-31-2016

• Chaturvedi, K., Kolbe, T. H., 2017: Future City Pilot 1 Engineering Report, Open Geospatial
Consortium. OGC Doc. 19-098

• Chaturvedi, K., Kolbe, T. H., 2019: A Requirement Analysis on Extending Semantic 3D City
Models for Supporting Time-dependent Properties. In: Proceedings of the 4th International
Conference on Smart Data and Smart Cities, ISPRS Annals of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, Vol. IV-4/W9, ISPRS. https://doi.org/10.5194/isprs-
annals-IV-4-W9-19-2019

• Elfes, A., 1989: Using occupancy grids for mobile robot perception and navigation. Computer
22(6):46–57. https://doi.org/10.1109/2.30720

345

https://portal.opengeospatial.org/files/?artifact_id=34762
https://doi.org/10.1186/s40965-018-0042-y
https://doi.org/10.1007/978-3-642-12670-3_1
https://doi.org/10.1007/978-3-642-12670-3_1
http://doi.org/10.5194/isprs-annals-IV-4-W5-9-2017
https://doi.org/10.3390/ijgi4042842
https://doi.org/10.1186/s40965-018-0055-6
https://doi.org/10.1186/s40965-018-0055-6
https://hal.archives-ouvertes.fr/hal-01521445
https://doi.org/10.1007/978-3-319-25691-7_11
https://doi.org/10.5194/isprs-annals-IV-2-W1-31-2016
http://docs.opengeospatial.org/per/16-098.html
https://doi.org/10.5194/isprs-annals-IV-4-W9-19-2019
https://doi.org/10.5194/isprs-annals-IV-4-W9-19-2019
https://doi.org/10.1109/2.30720

• Foley, J., van Dam, A., Feiner, S., Hughes, J., 2002: Computer Graphics: Principles and Practice.
2nd ed., Addison Wesley

• Gröger, G., Plümer, L., 2012: CityGML – Interoperable semantic 3D city models. ISPRS Journal
of Photogrammetry and Remote Sensing, Vol. 71, July 2012. https://dx.doi.org/10.1016/
j.isprsjprs.2012.04.004

• Gröger, G., Kolbe, T. H., Nagel, C., Häfele, K.-H., 2012: OGC City Geography Markup Language
(CityGML) Encoding Standard, Version 2.0.0, Open Geospatial Consortium. OGC Doc. 12-019

• Jensen, Christian S. and Dyreson, Curtis E.: The Consensus Glossary of Temporal Database
Concepts. February 1998 Version. In: Temporal Databases: Research and Practice [online].
Springer Berlin Heidelberg, 1998. p. 367–405. Lecture Notes in Computer Science. Available
from: 10.1007/BFb0053710

• Jensen, Christian S. and Snodgrass, Richard T., eds.: TR-90, Temporal Database Entries for the
Springer Encyclopedia of Database Systems. Technical Report. TimeCenter, 22 May 2008.
Available from: http://timecenter.cs.aau.dk/TimeCenterPublications/TR-90.pdf

• Johnson, Tom: Bitemporal Data. Elsevier, 2014. ISBN 978-0-12-408067-6. Available from:
10.1016/C2012-0-06609-4

• Kaden, R., Clemen, C., 2017: Applying Geodetic Coordinate Reference Systems within
Building Information Modeling (BIM). In: Proceedings of the FIG Working Week 2017,
Helsinki, Finland. https://www.fig.net/resources/proceedings/fig_proceedings/fig2017/papers/
ts06h/TS06H_kaden_clemen_8967.pdf

• Kolbe, T. H., Gröger, G., 2003: Towards unified 3D city models. In: Proceedings of the Joint
ISPRS Commission IV Workshop on Challenges in Geospatial Analysis, Integration and
Visualization II, Stuttgart, Germany. https://mediatum.ub.tum.de/doc/1145769/

• Kolbe, T. H., 2009: Representing and Exchanging 3D City Models with CityGML. In: J. Lee, S.
Zlatanova (Eds.), 3D Geo-Information Sciences, Selected Papers of the 3rd International
Workshop on 3D Geo-Information in Seoul, Korea. Springer, Berlin. https://doi.org/10.1007/978-
3-540-87395-2_2

• Konde, A., Tauscher, H., Biljecki, F., Crawford, J., 2018: Floor plans in CityGML. In: Proceedings
of the 13th 3D GeoInfo Conference 2018, ISPRS Annals of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, Vol. IV-4/W6, 25–32, ISPRS. https://doi.org/10.5194/isprs-
annals-IV-4-W6-25-2018

• Kutzner, T., Hijazi, I., Kolbe, T. H., 2018: Semantic Modelling of 3D Multi-utility Networks for
Urban Analyses and Simulations – The CityGML Utility Network ADE. International Journal
of 3-D Information Modeling (IJ3DIM) 7(2), 1-34. https://dx.doi.org/10.4018/IJ3DIM.2018040101

• Kutzner, T., Chaturvedi, K. & Kolbe, T. H., 2020: CityGML 3.0: New Functions Open Up New
Applications. PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science,
88, 43–61. https://doi.org/10.1007/s41064-020-00095-z

• Labetski, A., van Gerwen, S., Tamminga, G., Ledoux, H., Stoter, J., 2018: A proposal for an
improved transportation model in CityGML. In: Proceedings of the 13th 3D GeoInfo
Conference 2018, ISPRS Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, Vol. XLII-4/W10, 89–96. https://doi.org/10.5194/isprs-archives-XLII-4-W10-
89-2018

• Liu, Ling and Özsu, M. Tamer, eds.: Encyclopedia of Database Systems. New York, NY :

346

https://dx.doi.org/10.1016/j.isprsjprs.2012.04.004
https://dx.doi.org/10.1016/j.isprsjprs.2012.04.004
https://portal.opengeospatial.org/files/?artifact_id=47842
http://timecenter.cs.aau.dk/TimeCenterPublications/TR-90.pdf
https://www.fig.net/resources/proceedings/fig_proceedings/fig2017/papers/ts06h/TS06H_kaden_clemen_8967.pdf
https://www.fig.net/resources/proceedings/fig_proceedings/fig2017/papers/ts06h/TS06H_kaden_clemen_8967.pdf
https://mediatum.ub.tum.de/doc/1145769/
https://doi.org/10.1007/978-3-540-87395-2_2
https://doi.org/10.1007/978-3-540-87395-2_2
https://doi.org/10.5194/isprs-annals-IV-4-W6-25-2018
https://doi.org/10.5194/isprs-annals-IV-4-W6-25-2018
https://dx.doi.org/10.4018/IJ3DIM.2018040101
https://doi.org/10.1007/s41064-020-00095-z
https://doi.org/10.5194/isprs-archives-XLII-4-W10-89-2018
https://doi.org/10.5194/isprs-archives-XLII-4-W10-89-2018

Springer New York, 2018. ISBN 978-1-4614-8266-6. Available from: 10.1007/978-1-4614-8265-9

• Löwner, M.-O., Gröger, G., Benner, J., Biljecki, F., Nagel, C., 2016: Proposal for a new LOD and
multi-representation concept for CityGML. In: Proceedings of the 11th 3D Geoinfo Conference
2016, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
Vol. IV-2/W1, 3–12. https://doi.org/10.5194/isprs-annals-IV-2-W1-3-2016

• Nouvel, R., Bahu, J. M., Kaden, R., Kaempf, J., Cipriano, P., Lauster, M., Haefele, K.-H., Munoz, E.,
Tournaire, O, Casper, E., 2015: Development of the CityGML Application Domain Extension
Energy for Urban Energy Simulation. In: Proceedings of Building Simulation 2015 - 14th
Conference of the International Building Performance Simulation Association, IBPSA, 559-564.
http://www.ibpsa.org/proceedings/BS2015/p2863.pdf

• Smith, B., Varzi, A. C., 2000: Fiat and Bona Fide Boundaries. Philosophy and Phenomenological
Research, Vol. 60, No. 2, 401-420. https://doi.org/10.2307/2653492

• Snodgrass, Richard T: Developing time-oriented database applications in SQL. San Francisco,
California : Morgan Kaufmann Publishers, July 1999. ISBN 1-55860-436-7. Available from:
http://www.cs.arizona.edu/rts/tdbbook.pdf[http://www.cs.arizona.edu/rts/tdbbook.pdf]

• Stadler, A., Kolbe, T. H., 2007: Spatio-semantic Coherence in the Integration of 3D City
Models. In: Proceedings of the 5th International ISPRS Symposium on Spatial Data Quality
ISSDQ 2007 in Enschede. http://www.isprs.org/proceedings/XXXVI/2-C43/Session1/
paper_Stadler.pdf

• Vretanos, P. A. 2010: OpenGIS Web Feature Service 2.0 Interface Standard, Open Geospatial
Consortium. OGC Doc. 09-025r1

• OASIS MQTT Technical Committee: MQTT Version 5.0 Standard, OASIS, March 7, 2019,
Available from OASIS.

• Reed, C., Belayneh T.: OGC Indexed 3d Scene Layer (I3S) and Scene Layer Package Format
Specification, Open Geospatial Consortium, Available from OGC Doc. 17-014r7

• [[3dtiles_citation, OGC 3D Tiles]]Cozzi, P., Lilley, S., Getz, G. OGC 3D Tiles Specification 1.0 Open
Geospatial Consortium, Available from OGC Doc. 18-053r2

• Burggraf, D.: OGC KML 2.3, Open Geospatial Consortium, Available from OGC Doc. 12-007r2

• Bröring, A., Stasch, C., Echterhoff, J.: OGC® Sensor Observation Service Interface Standard,
Open Geospatial Consortium, Available from OGC Doc. 12-006

• Liang, S., Huang, C., Khalafbeigi, T.: OGC SensorThings API Part 1: Sensing, Open Geospatial
Consortium, Available from OGC Doc. 15-078r6

• [[3dps_citation, OGC 3D Portrayal Service]]Hagedorn, B., Thum, S., Reitz, T., Coors, V., Gutbell, R.:
OGC® 3D Portrayal Service 1.0, Open Geospatial Consortium, Available from OGC Doc. 15-
001r3.

• Bhatia, S.,Cozzi, P., Knyazev, A., Parisi, T.: The GL Transmission Format (glTF), The Khronos
Group, Available from https://www.khronos.org/gltf.

347

https://doi.org/10.5194/isprs-annals-IV-2-W1-3-2016
http://www.ibpsa.org/proceedings/BS2015/p2863.pdf
https://doi.org/10.2307/2653492
http://www.cs.arizona.edu/
http://www.cs.arizona.edu/
http://www.isprs.org/proceedings/XXXVI/2-C43/Session1/paper_Stadler.pdf
http://www.isprs.org/proceedings/XXXVI/2-C43/Session1/paper_Stadler.pdf
http://www.opengeospatial.org/standards/wfs
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
http://docs.opengeospatial.org/cs/17-014r7/17-014r7.html
http://docs.opengeospatial.org/cs/18-053r2/18-053r2.html
http://docs.opengeospatial.org/is/12-007r2/12-007r2.html
https://portal.opengeospatial.org/files/?artifact_id=47599
http://docs.opengeospatial.org/is/15-078r6/15-078r6.html
https://portal.ogc.org/files/?artifact_id=65620
https://portal.ogc.org/files/?artifact_id=65620
https://www.khronos.org/gltf

	Untitled
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Scope
	Chapter 3. Conformance
	3.1. Conceptual Models
	3.2. Implementation Specifications
	3.3. Conformance Classes

	Chapter 4. References
	Chapter 5. Terms and Definitions
	Chapter 6. Conventions
	6.1. Identifiers
	6.2. UML Notation

	Chapter 7. Overview of CityGML
	7.1. Modularization
	7.2. General Modelling Principles
	7.3. Representation of Spatial Properties
	7.4. CityGML Core Model: Space Concept, Levels of Detail, Special Spatial Types
	7.5. Appearances
	7.6. Modelling Dynamic Data
	7.7. Extending CityGML

	Chapter 8. CityGML UML Model
	8.1. Structural Overview of Requirements Classes
	8.2. Core
	8.3. Appearance
	8.4. City Furniture
	8.5. City Object Group
	8.6. Dynamizer
	8.7. Generics
	8.8. Land Use
	8.9. Point Cloud
	8.10. Relief
	8.11. Transportation
	8.12. Vegetation
	8.13. Versioning
	8.14. Water Body
	8.15. Construction
	8.16. Bridge
	8.17. Building
	8.18. Tunnel

	Chapter 9. CityGML Data Dictionary
	9.1. ISO Classes
	9.2. Core
	9.3. Appearance
	9.4. CityFurniture
	9.5. CityObjectGroup
	9.6. Dynamizer
	9.7. Generics
	9.8. LandUse
	9.9. PointCloud
	9.10. Relief
	9.11. Transportation
	9.12. Vegetation
	9.13. Versioning
	9.14. WaterBody
	9.15. Construction
	9.16. Bridge
	9.17. Building
	9.18. Tunnel

	Chapter 10. Application Domain Extension (ADE)
	10.1. General Rules for ADEs
	10.2. Defining New ADE Model Elements
	10.3. Augmenting CityGML Feature Types with Additional ADE Properties
	10.4. Encoding of ADEs
	10.5. Requirements and Recommendations

	Annex A: Abstract Test Suite (Normative)
	A.1. Introduction
	A.2. Conformance Class Core
	A.3. Conformance Class Appearance
	A.4. Conformance Class CityFurniture
	A.5. Conformance Class CityObjectGroup
	A.6. Conformance Class Dynamizer
	A.7. Conformance Class Generics
	A.8. Conformance Class LandUse
	A.9. Conformance Class PointCloud
	A.10. Conformance Class Relief
	A.11. Conformance Class Transportation
	A.12. Conformance Class Vegetation
	A.13. Conformance Class Versioning
	A.14. Conformance Class WaterBody
	A.15. Conformance Class Construction
	A.16. Conformance Class Bridge
	A.17. Conformance Class Building
	A.18. Conformance Class Tunnel
	A.19. Conformance Class ADE

	Annex B: Revision History
	Annex C: Glossary
	C.1. ISO Concepts
	C.2. Abbreviated Terms

	Annex D: Bibliography

