
1
Copyright © 2022 Open Geospatial Consortium

Open Geospatial Consortium
Submission Date 2022-11-28

Approval Date: <yyyy-mm-dd>

Publication Date: <yyyy-mm-dd>

External identifier of this OGC® document: <http://www.opengis.net/doc/[{doc-type/}]{standard}/{m.n}>

Internal reference number of this OGC® document: 20-072r3

Version: 1.1

Category: OGC® Community Standard

Editor: Hugo Ledoux, Balázs Dukai

CityJSON 1.1 Community Standard

Copyright notice

Copyright © 2022 Open Geospatial Consortium
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is not an OGC Standard. This document is distributed for review and
comment. This document is subject to change without notice and may not be referred to
as an OGC Standard.

Recipients of this document are invited to submit, with their comments, notification of
any relevant patent rights of which they are aware and to provide supporting
documentation.

Document type: OGC® Community Standard
Document subtype:
Document stage: Draft
Document language: English

2
Copyright © 2022 Open Geospatial Consortium

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth below,
to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property
without restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish,
distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to
do so, provided that all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above
copyright notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS
THAT MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED
IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL
MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF
INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY
DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH
THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all
copies in any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as
provided in the following sentence, no such termination of this license shall require the termination of any third party end-user
sublicense to the Intellectual Property which is in force as of the date of notice of such termination. In addition, should the Intellectual
Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent,
copyright, trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may terminate this license
without any compensation or liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or
cause to be destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual
Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without
prior written authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may
authorize you or any third party to use certification marks, trademarks or other special designations to indicate compliance with any
LICENSOR standards or specifications. This Agreement is governed by the laws of the Commonwealth of Massachusetts. The
application to this Agreement of the United Nations Convention on Contracts for the International Sale of Goods is hereby expressly
excluded. In the event any provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be
modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force and effect. No
decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies available to it.

CityJSON Specifications 1.1.3

https://cityjson.org/specs/1.1.3/

https://cityjson.org/specs/

https://cityjson.org/specs/overview/

GitHub

Hugo Ledoux (TU Delft)
Balázs Dukai (3DGI)

 The editors have waived all copyright and related or neighbouring rights to this work. The CityJSON Specifications
are marked with CC0 1.0 Universal.

CityJSON is a data exchange format for digital 3D models of cities and landscapes. It aims at being
easy-to-use (for reading, processing, and creating datasets), and it was designed with programmers in
mind, so that tools and APIs supporting it can be quickly built. The JSON-based encoding of CityJ-
SON is conformant with a subset of the OGC CityGML data model (version 3.0). Using JSON instead
of GML allows us to compress files by a factor 6 and at the same time to simplify greatly the structure
of the files.

Table of Contents

1 CityJSON Object

2 The different City Objects
2.1 Attributes for all City Objects

Living Standard, 25 November 2022

This version:

Latest published version:

Previous Versions:

Feedback:

Editors:

Abstract

https://cityjson.org/specs/1.1.3/
https://cityjson.org/specs/
https://cityjson.org/specs/overview/
https://github.com/cityjson/specs/issues/
https://3d.bk.tudelft.nl/hledoux
https://3dgi.nl/
http://creativecommons.org/publicdomain/zero/1.0
https://json.org/
https://docs.ogc.org/is/20-010/20-010.html

2.2 Bridge

2.3 Building

2.4 CityFurniture

2.5 CityObjectGroup

2.6 LandUse

2.7 OtherConstruction

2.8 PlantCover

2.9 SolitaryVegetationObject

2.10 TINRelief

2.11 Transportation

2.12 Tunnel

2.13 WaterBody

3 Geometry Objects
3.1 Coordinates of the vertices

3.2 Arrays to represent boundaries

3.3 Semantics of geometric primitives

3.4 Geometry templates

4 Transform Object

5 Metadata
5.1 geographicalExtent (bbox)

5.2 identifier

5.3 pointOfContact

5.4 referenceDate

5.5 referenceSystem (CRS)

5.6 title

6 Appearance Object

6.1 Geometry Object having material(s)

6.2 Geometry Object having texture(s)

6.3 Material Object

6.4 Texture Object

6.5 Vertices-texture Object

7 Handling large files

7 Handling large files
7.1 Decomposing an area into parts/tiles

7.2 Text sequences and streaming with CityJSONFeature

8 Extensions
8.1 Using an Extension in a CityJSON file

8.2 The Extension file

8.3 Case 1: Adding new properties at the root of a document

8.4 Case 2: Defining attributes on existing City Objects

8.5 Case 3: Defining a new Semantic Object

8.6 Case 4: Creating and/or extending new City Objects

8.7 Rules to follow to define new City Objects

9 CityJSON Schemas

10 CityGML v3.0 conformance

A CityJSON object represents one 3D city model of a given area, this model may contain features of
different types, as defined in the CityGML data model.

A CityJSON object:

1. CityJSON Object§

is a JSON object.

must have one member with the name "type". The value must be "CityJSON".

must have one member with the name "version". The value must be a string with the version
(X.Y) of the CityJSON object. Observe that while schemas can have a version with patch version
(X.Y.Z), a CityJSON object points only to the minor version (X.Y), and for validation the latest
schema of that minor version should be used.

must have one member with the name "transform". The value is a JSON object describing
how to decompress the integer coordinates of the geometries to obtain real-world coordinates. See
§ 4 Transform Object for details.

must have one member with the name "CityObjects". The value of this member is a collec-
tion of key-value pairs, where the key is the ID of the object, and the value is one City Object.
The ID of a City Object should be unique (within one CityJSON Object). See § 2 The different
City Objects for details.

The minimal valid CityJSON object is:

{
 "type": "CityJSON",
 "version": "1.1",
 "transform": {
 "scale": [1.0, 1.0, 1.0],
 "translate": [0.0, 0.0, 0.0]
 },
 "CityObjects": {},
 "vertices": []
}

An "empty" but complete CityJSON object will look like this:

{
 "type": "CityJSON",
 "version": "1.1",
 "extensions": {},

must have one member with the name "vertices". The value is an array representing the coor-
dinates of each vertex of the city model. See § 3.1 Coordinates of the vertices.

may have one member with the name "metadata". The value may be a JSON object describing
the coordinate reference system used, the extent of the dataset, its creator, etc. See § 5 Metadata
for details.

may have one member with the name "extensions", which is used if there are Extensions used
in the file. See § 8 Extensions for details.

may have one member with the name "appearance". The value may contain JSON objects rep-
resenting the textures and/or materials of surfaces. See § 6 Appearance Object for details.

may have one member with the name "geometry-templates", the value is a JSON object
containing the templates that can be reused by different City Objects (usually for trees). This is
equivalent to the concept of "implicit geometries" in CityGML. See § 3.4 Geometry templates for
details.

may have other members, and their value is not prescribed. Because these are not standard mem-
bers in CityJSON, they might be ignored by parsers.

Suggested convention: A file containing one CityJSON object may have the extension
'.city.json'

 "transform": {
 "scale": [1.0, 1.0, 1.0],
 "translate": [0.0, 0.0, 0.0]
 },
 "metadata": {},
 "CityObjects": {},
 "vertices": [],
 "appearance": {},
 "geometry-templates": {}
}

While the order of the CityJSON member values should preferably be as above, not all JSON gen-
erators support this, therefore the order is not prescribed.

2. The different City Objects§

A City Object:

A City Object of type 2nd-level:

There are 2 kinds of City Objects:

This is because the schema of CityGML has been flattened. For example, a
"BuildingInstallation" cannot be present in a dataset without being the "children" of a
"Building", but a "Building" can be present by itself.

1. 1st-level: City Objects that can "exist by themselves".

2. 2nd-level: City Objects that need to have a "parents" to exist.

must have one member "type". The value is one of the possibilities in the figure above (of type
string). If an Extension is used, then the type can be any string starting with a "+", as explained
in § 8 Extensions.

may have one member with the name "geometry". The value is an array containing 0 or more
Geometry Objects. More than one Geometry Object is used to represent several different levels-
of-detail (LoDs) for the same object. However, the different Geometry Objects of a given City
Object do not have to be of different LoDs.

may have one member with the name "attributes". The value is an object where the attribut-
es of the City Object are listed.

may have one member with the name "geographicalExtent" (the axis-aligned bounding box
of the City Object). The value is an array with 6 values: [minx, miny, minz, maxx, maxy,
maxz]

may have one member "children". The value is an array of the IDs (of type string) of the 2nd-
level City Objects that are part of the 1st-level City Object. Only the direct children of the City
Object are listed, not the grandchildren. Also, a City Object can have different types of City Ob-
jects as children, eg a "Building" can have both as children "BuildingPart" and
"BuildingInstallation". The order of the children in the array is not relevant.

must have one member "parents". The value is an array of the IDs (of type string) of the City
Objects that are its parents. For the City Objects in the CityJSON core module, this array will al-
ways be of size 1 (only one parent). New City Objects defined in extensions can have more than
one parents.

may have one member "children", and the "children" array only references the City Ob-
jects that are one level below the current one in the hierarchy. For instance a "BuildingPart"
that contains a "BuildingInstallation".

"CityObjects": {
 "id-1": {
 "type": "Building",
 "geographicalExtent": [84710.1, 446846.0, -5.3, 84757.1, 446944.0, 40.
 "attributes": {
 "measuredHeight": 22.3,
 "roofType": "gable",
 "owner": "Elvis Presley"
 },
 "children": ["id-2"],
 "geometry": [{...}]
 },
 "id-2": {
 "type": "BuildingPart",
 "parents": ["id-1"],
 "children": ["id-3"],
 ...
 },
 "id-3": {

 "type": "BuildingInstallation",
 "parents": ["id-2"],
 ...
 },
 "id-4": {
 "type": "LandUse",
 ...
 }
}

An example of a minimal valid City Object is:

{
 "type": "Building"
}

The above example is for a "Building" City Object, but any 1st-level City Object can be encoded
the same way.

An example of a minimal 2nd-level valid City Object is:

{
 "type": "BuildingPart",
 "parents": ["id-parent"]
}

The above example is for a "BuildingPart", but any 2nd-level City Object can be encoded this
way.

The attributes for a given City Object are not prescribed (unlike in CityGML). This means that the
"attributes" is a JSON object and its content is a JSON key-value pair ("owner" in the example
above is one such attribute). Note that any valid JSON value (including an array and/or object) is a
valid attribute value.

"CityObjects": {
 "id-1": {
 "type": "LandUse",
 "attributes": {
 "function": "Industry and Business",
 "area-parcel": {
 "value": 437,
 "uom": "m2"
 },
 },
 "geometry": [{...}]
 },
 "id-2": {
 "type": "WaterBody",
 "attributes": {
 "name": "Lake Black",
 "some-list": ["a", "b", "c"]
 },
 "geometry": [{...}]
 }
}

2.1. Attributes for all City Objects§

2.2. Bridge§

See the CityGML v3.0.0 Bridge module for more details.

Six City Objects are related to bridges:

The geometry of both "Bridge" and "BridgePart" can only be represented with these Geometry
Objects: (1) "Solid", (2) "CompositeSolid", (3) "MultiSurface", (4) "CompositeSurface".
The geometry of the four other objects can be represented with any of the Geometry Objects.

A City Object of type "Bridge" or "BridgePart" may have a member "address", whose value is
an array of JSON objects listing the potentially several addresses of that bridge . The properties of an
address JSON object are free, to accommodate the different ways addresses are structured in different
countries.

"CityObjects": {
 "LondonTower": {
 "type": "Bridge",
 "address": [
 {
 "City": "London",
 "Country": "UK"
 }
],
 "children": ["Bext1", "Bext2", "Inst-2017-11-14"],
 "geometry": [{
 "type": "MultiSurface",
 "lod": "2",
 "boundaries": [
 [[0, 3, 2, 1]],
 [[4, 5, 6, 7]],
 [[0, 1, 5, 4]],
 [[1, 2, 6, 5]],
 [[2, 3, 7, 6]],
 [[3, 0, 4, 7]]

"Bridge"

"BridgePart"

"BridgeInstallation"

"BridgeConstructiveElement"

"BridgeRoom"

"BridgeFurniture"

https://docs.ogc.org/is/20-010/20-010.html#toc44

]
 }]
 }
}

See the CityGML v3.0.0 Building module for more details.

Eight City Objects are related to buildings:

The geometry of "Building", "BuildingPart", "BuildingStorey", "BuildingRoom", and
"BuildingUnit" can only be represented with these Geometry Objects: (1) "Solid", (2)
"CompositeSolid", (3) "MultiSurface", (4) "CompositeSurface".

All eight City Objects, except "Building", must have a "parents" property. The installations, fur-
nitures, and subdivisions can have as parents a "Building", a "BuildingPart", or a
"BuildingRoom".

The geometry of "BuildingInstallation", "BuildingConstructiveElement", or
"BuildingFurniture" objects can be represented with any of the Geometry Objects.

A City Object of type "Building", "BuildingPart" or "BuildingUnit" may have a member
"address", consisting of an array of JSON objects listing one or more addresses of that building (an
apartment building could contain several for instance). The properties of an address JSON object are
free format, to accommodate the different ways addresses are described in different countries. If a lo-
cation is necessary (eg to locate the position of the front door) then a property "location" should be
used, and it should contain a "MultiPoint" geometry.

2.3. Building§

"Building"

"BuildingPart"

"BuildingInstallation"

"BuildingConstructiveElement"

"BuildingFurniture"

"BuildingStorey"

"BuildingRoom"

"BuildingUnit"

https://docs.ogc.org/is/20-010/20-010.html#toc45

"CityObjects": {
 "id-1": {
 "type": "Building",
 "attributes": {
 "roofType": "gabled roof"
 },
 "geographicalExtent": [84710.1, 446846.0, -5.3, 84757.1, 446944.0, 40.
 "children": ["id-56", "id-832", "mybalcony"]
 },
 "id-56": {
 "type": "BuildingPart",
 "parents": ["id-1"],
 ...
 },
 "mybalcony": {
 "type": "BuildingInstallation",
 "parents": ["id-1"],
 ...

 }
 ...
}

"myroom": {
 "type": "BuildingRoom",
 "attributes": {
 "usage": "living room"
 },
 "parents": ["id-1"],
 "geometry": [{
 "type": "Solid",
 "lod": "2",
 "boundaries": [
 [[[0, 3, 2, 1]], [[4, 5, 6, 7]], [[0, 1, 5, 4]], ...]
]
 }]
}

{
 "type": "Building",
 "address": [
 {
 "Country": "Canada",
 "Locality": "Chibougamau",
 "ThoroughfareNumber": "1",
 "ThoroughfareName": "rue de la Patate",
 "Postcode": "H0H 0H0",
 "location": {
 "type": "MultiPoint",
 "lod": "1",
 "boundaries": [231]
 }
 }
]
}

See the CityGML v3.0.0 CityFurniture module for more details.

The geometry of a City Object of type "CityFurniture" can be any Geometry Object.

"mystopsign": {
 "type": "CityFurniture",
 "attributes": {
 "function": "bus stop"
 },
 "geometry": [{
 "type": "MultiSurface",
 "lod": "2",
 "boundaries": [
 [[0, 3, 2, 1]], [[4, 5, 6, 7]], [[0, 1, 5, 4]]
]
 }]
}

2.4. CityFurniture§

https://docs.ogc.org/is/20-010/20-010.html#toc32

See the CityGML v3.0.0 CityObjectGroup module for more details.

The CityGML concept of groups, where City Objects are aggregated based on certain criteria (think of
a neighbourhood in a city for instance), is possible in CityJSON. The group is a City Object, and it can
contain, if needed, a geometry (the polygon representing the neighbourhood for instance).

Since a "CityObjectGroup" is also a City Object, it can be part of another group.

A City Object of type "CityObjectGroup":

"CityObjects": {
 "my-neighbourhood": {
 "type": "CityObjectGroup",
 "children": ["building1", "building2", "building666"]
 }
}

"CityObjects": {
 "my-neighbourhood": {
 "type": "CityObjectGroup",
 "attributes": {
 "location": "Chibougamau Sud"
 },
 "children": ["building1", "building666"],
 "children_roles": ["residential building", "voting location"],
 "geometry": [{
 "type": "MultiSurface",

2.5. CityObjectGroup§

must have a member "children". The value is an array of the IDs of the City Objects that the
group contains. As for other City Objects, the City Objects must have the ID of the group in
"parents".

may have a member "children_roles", whose value is an array of strings describing the role
of each City Object in the group. This member must be of the same length as that of
"children".

may have a member "attributes".

may have a member "geometry". Notice that since the "CityObjectGroup" is a container of
different City Objects, the concept of Level of Detail does not apply to it. Nevertheless, the
"lod" property is still used for enforcing uniformity with all the other geometries.

https://docs.ogc.org/is/20-010/20-010.html#toc33

 "lod": "2",
 "boundaries": [[[2, 41, 5, 77]]]
 }]
 }
}

See the CityGML v3.0.0 LandUse module for more details.

The geometry of a City Object of type "LandUse" can be of type "MultiSurface" or
"CompositeSurface".

"oneparcel": {
 "type": "LandUse",
 "geometry": [{
 "type": "MultiSurface",
 "lod": "1",
 "boundaries": [
 [[0, 3, 2, 1]], [[4, 5, 6, 7]], [[0, 1, 5, 4]]
]
 }]
}

See the CityGML v3.0.0 Construction module for more details (OtherConstruction is one class).

This is used for constructions that are not buildings, bridges, or tunnels. Examples are:

2.6. LandUse§

2.7. OtherConstruction§

electricity pylon

fence

permanent water tank

pontoon

railway platform

https://docs.ogc.org/is/20-010/20-010.html#toc36
https://docs.ogc.org/is/20-010/20-010.html#toc43

The geometry of a City Object of type "OtherConstruction" can be any Geometry Object.

"mypylon": {
 "type": "OtherConstruction",
 "attributes": {
 "class": "windmill",
 "conditionOfConstruction": "underConstruction"
 },
 "geometry": [{
 "type": "MultiSurface",
 "lod": "2",
 "boundaries": [
 [[0, 3, 2, 1]], [[4, 5, 6, 7]], [[0, 1, 5, 4]], ...
]
 }]
}

See the CityGML v3.0.0 Vegetation module for more details (PlantCover is one class).

The geometry of a City Object of type "PlantCover" can be of type: (1) "Solid", (2)
"CompositeSolid", (3) "MultiSolid", (4) "MultiSurface", (5) "CompositeSurface".

"myplants": {
 "type": "PlantCover",
 "attributes": {
 "averageHeight": 11.05
 },
 "geometry": [{
 "type": "MultiSolid",
 "lod": "2",
 "boundaries": [

shed

windmill

2.8. PlantCover§

https://docs.ogc.org/is/20-010/20-010.html#toc40

 [
 [[[0, 3, 2, 1]], [[4, 5, 6, 7]], [[0, 1, 5, 4]], [[10, 13, 22, 31]
],
 [
 [[[5, 34, 31, 12]], [[44, 54, 62, 74]], [[111, 123, 922, 66]]]
]
]
 }]
}

See the CityGML v3.0.0 Vegetation module for more details (SolitaryVegetationObject is one
class).

The geometry of a City Object of type "SolitaryVegetationObject" can be any Geometry
Object.

"onebigtree": {
 "type": "SolitaryVegetationObject",
 "attributes": {
 "trunkDiameter": 5.3,
 "crownDiameter": 11.0
 },
 "geometry": [{
 "type": "MultiPoint",
 "lod": "1",
 "boundaries": [1]
 }]
}

See the CityGML v3.0.0 Relief module for more details (TINRelief is one class).

The geometry of a City Object of type "TINRelief" can only be of type "CompositeSurface".

2.9. SolitaryVegetationObject§

2.10. TINRelief§

https://docs.ogc.org/is/20-010/20-010.html#toc40
https://docs.ogc.org/is/20-010/20-010.html#toc38

CityJSON does not define a specific Geometry Object for a TIN (triangulated irregular network), and
is simply a CompositeSurface for which every surface is a triangle (thus a polygon having 3 vertices,
and no interior ring).

Notice that in practice any "CompositeSurface" is allowed for encoding a terrain, and that arbitrary
polygons could also be used (not just triangles).

"myterrain01": {
 "type": "TINRelief",
 "geographicalExtent": [84710.1, 446846.0, -5.3, 84757.1, 446944.0, 40.9
 "geometry": [{
 "type": "CompositeSurface",

 "lod": "1",
 "boundaries": [
 [[0, 3, 2]], [[4, 5, 6]], [[1, 2, 6]], [[2, 3, 7]], [[3, 0, 4]]
]
 }]
}

See the CityGML v3.0.0 Transportation module for more details.

Four City Objects are related to transportation:

Observe that the "Section", "Intersection", and "Track" classes from CityGML are omitted because
they can be easily specified using specific attributes.

"ma_rue": {
 "type": "Road",
 "attributes": {
 "class": "backwards",

2.11. Transportation§

"Road"

"Railway"

"Waterway"

"TransportSquare" (to model for instance parking lots and squares)

https://docs.ogc.org/is/20-010/20-010.html#toc39

 "clearanceSpace": 2.23,
 "clearanceSpaceUnit": "meter"
 },
 "children": ["sect1", "sect2"],
 "geometry": [...]
}
"sect1": {
 "type": "Road",
 "attributes": {
 "class": "section"
 },
 "parents": ["ma_rue"],
 "geometry": [...],
}

Similarly, the CityGML classes "TrafficArea", "AuxiliaryTrafficArea", "Marking", and "Hole" are im-
plemented as semantic surface (see § 3.3 Semantics of geometric primitives). That is, the surface repre-
senting a road should be split into sub-surfaces (therefore forming a "MultiSurface" or a
"CompositeSurface") in which each of the sub-surfaces has semantics.

"ma_rue": {
 "type": "Road",
 "geometry": [{
 "type": "MultiSurface",
 "lod": "2",
 "boundaries": [
 [[0, 3, 2, 1, 4]], [[4, 5, 6, 666, 12]], [[0, 1, 5]], [[20, 21, 75]]
]
 }],
 "semantics": {
 "surfaces": [
 {
 "type": "TrafficArea",
 "surfaceMaterial": ["asphalt"],
 "function": "road"
 },
 {
 "type": "AuxiliaryTrafficArea",
 "function": "green areas"
 },
 {

"type": "TrafficArea"

 type : TrafficArea ,
 "surfaceMaterial": ["dirt"],
 "function": "road"
 }
],
 "values": [0, 1, null, 2]
 }
}

See the CityGML v3.0.0 Tunnel module for more details.

Six City Objects are related to tunnels:

The geometry of both "Tunnel" and "TunnelPart" can only be represented with these Geometry
Objects: (1) "Solid", (2) "CompositeSolid", (3) "MultiSurface", (4) "CompositeSurface".

The geometry of the other four objects can be represented with any of the Geometry Objects.

"CityObjects": {
 "Lærdalstunnelen": {
 "type": "Tunnel",
 "attributes": {
 "yearOfConstruction": 2000,
 "length": "24.5km"
 },
 "children": ["stoparea1"],
 "geometry": [{
 "type": "Solid",

2.12. Tunnel§

"Tunnel"

"TunnelPart"

"TunnelInstallation"

"TunnelConstructiveElement"

"TunnelHollowSpace"

"TunnelFurniture"

https://docs.ogc.org/is/20-010/20-010.html#toc46

 "lod": "2",
 "boundaries": [
 [[[0, 3, 2, 1]], [[4, 5, 6, 7]], [[0, 1, 5, 4]]]
]
 }]
 }
}

See the CityGML v3.0.0 WaterBody module for more details.

The geometry of a City Object of type "WaterBody" can be of types: "MultiLineString",
"MultiSurface", "CompositeSurface", "Solid", or "CompositeSolid".

"mygreatlake": {
 "type": "WaterBody",
 "attributes": {
 "usage": "leisure",
 },
 "geometry": [{
 "type": "Solid",
 "lod": "2",
 "boundaries": [
 [[[0, 3, 2, 1]], [[4, 5, 6, 7]], [[0, 1, 5, 4]]]
]
 }]
}

CityJSON defines the following 3D geometric primitives, all of which are embedded in 3D space (and
therefore their vertices have (x, y, z) coordinates). The indexing mechanism of the format Wavefront
OBJ is reused, that is a geometry does not store the locations of its vertices, but points to a vertex in a
list (property "vertices" in the CityJSON Object).

As is the case in CityGML, only linear and planar primitives are allowed. No curves or parametric sur-
faces can be represented.

2.13. WaterBody§

3. Geometry Objects§

https://docs.ogc.org/is/20-010/20-010.html#toc42
https://en.wikipedia.org/wiki/Wavefront_.obj_file

A Geometry object is a JSON object for which the type member’s value is one of the following:

A Geometry object:

A CityJSON must have one member named "vertices". The value is an array of array of integers
representing the coordinates of each vertex of the city model. The position of a vertex in this array (0-

1. "MultiPoint"

2. "MultiLineString"

3. "MultiSurface"

4. "CompositeSurface"

5. "Solid"

6. "MultiSolid"

7. "CompositeSolid"

8. "GeometryInstance" (this is another type with different properties, see § 3.4 Geometry tem-
plates)

must have one member with the name "type". The value must be a string with one of the 8 al-
lowed Geometry types, as defined above.

must have one member with the name "lod". The value must be a string with the LoD identify-
ing the level-of-detail (LoD) of the geometry. This can be either a single digit (following the City-
GML standards), or "X.Y"-formatted if the improved LoDs by TU Delft are used.

must have one member with the name "boundaries". The value is a hierarchy of arrays (the
depth depends on the Geometry object) with integers. An integer refers to the index in the
"vertices" array of the CityJSON object, and it is 0-based (ie the first element in the array has
the index "0", the second one "1", etc.).

may have one member "semantics". The value is a JSON Object, as defined below.

may have one member "material". The value is a JSON Object, as defined below.

may have one member "texture". The value is a JSON Object, as defined below.

There is no Geometry Object for MultiGeometry. Instead, for the "geometry" member of a City-
Object, the different geometries may be enumerated in the array (all with the same value for the
member "lod").

3.1. Coordinates of the vertices§

https://3d.bk.tudelft.nl/lod

based) is used to represent the "boundaries" of Geometry Objects.

"vertices": [
 [102, 103, 1],
 [11, 910, 43],
 [25, 744, 22],
 ...
 [23, 88, 5],
 [8523, 487, 22]
]

The depth of the hierarchy of arrays depends on the Geometry object, and is as follows.

one vertex must be an array with exactly 3 integers, representing the (x,y,z) location of the vertex
before it is transformed to its real-world coordinates (with § 4 Transform Object).

the array of vertices may be empty.

vertices may be repeated.

3.2. Arrays to represent boundaries§

A "MultiPoint" has an array with the indices of the vertices; this array can be empty.

A "MultiLineString" has an array of arrays, each containing the indices of a LineString.

A "MultiSurface", or a "CompositeSurface", has an array containing surfaces, each sur-
face is modelled by an array of array, the first array being the exterior boundary of the surface,
and the others the interior boundaries.

A "Solid" has an array of shells, the first array being the exterior shell of the solid, and the oth-
ers the interior shells. Each shell has an array of surfaces, modelled in the exact same way as a
MultiSurface/CompositeSurface.

A "MultiSolid", or a "CompositeSolid", has an array containing solids, each solid is mod-
elled as above.

JSON does not allow comments, the comments in the example below (C++ style: //-- my
comments) are only to explain the cases, and should be removed.

{
 "type": "MultiPoint",
 "lod": "1",
 "boundaries": [2, 44, 0, 7]
}

{
 "type": "MultiLineString",
 "lod": "1",
 "boundaries": [
 [2, 3, 5], [77, 55, 212]
]
}

{
 "type": "MultiSurface",
 "lod": "2",
 "boundaries": [
 [[0, 3, 2, 1]], [[4, 5, 6, 7]], [[0, 1, 5, 4]]
]
}

{
 "type": "Solid",
 "lod": "2",
 "boundaries": [
 //-- exterior shell
 [[[0, 3, 2, 1, 22]], [[4, 5, 6, 7]], [[0, 1, 5, 4]], [[1, 2, 6, 5]]],
 //-- interior shell
 [[[240, 243, 124]], [[244, 246, 724]], [[34, 414, 45]], [[111, 246, 5]
]
}

{
 "type": "CompositeSolid",
 "lod": "3",
 "boundaries": [
 [//-- 1st Solid
 [[[0, 3, 2, 1, 22]], [[4, 5, 6, 7]], [[0, 1, 5, 4]], [[1, 2, 6, 5]]

 [[[240, 243, 124]], [[244, 246, 724]], [[34, 414, 45]], [[111, 246,
],
 [//-- 2nd Solid
 [[[666, 667, 668]], [[74, 75, 76]], [[880, 881, 885]], [[111, 122, 2
]
]
}

A Semantic Object is a JSON object representing the semantics of a primitive of a geometry (e.g. a
surface of a building). A Semantic Object may also represent other attributes of the primitive (e.g. the
slope of the roof, or the solar potential). For surface and volumetric geometries (e.g. MultiSurface,
Solid and MultiSolid), a primitive is a surface. If a geometry is a MultiPoint or a
MultiLineString, then the primitives are its respective sub-parts: points and linestrings.

A Semantic Object:

{
 "type": "RoofSurface",
 "slope": 16.4,
 "children": [2, 37],
 "solar-potential": 5
}

See this tutorial for further explanation on the depth of arrays of Geometry objects.

3.3. Semantics of geometric primitives§

must have one member with the name "type". The value is one of the allowed value. These de-
pend on the City Object (see below).

may have an attribute "parent". The value is an integer pointing to another Semantic Object of
the same geometry (index of it, 0-based). This is used to explicitly represent to which wall or roof
a window or door belongs to; there can be only one parent.

may have an attribute "children". The value is an array of integers pointing to other Semantic
Objects of the same geometry (index of it, 0-based). This is used to explicitly represent the open-
ings (windows and doors) of walls and roofs.

may have other attributes in the form of a JSON key-value pair, where the value must not be a
JSON object (but a string/number/integer/boolean).

https://www.cityjson.org/dev/geom-arrays/

{
 "type": "Window",
 "parent": 2,
 "type-glass": "HR++"
}

"Building", "BuildingPart", "BuildingRoom", "BuildingStorey", "BuildingUnit", and
"BuildingInstallation" can have the following semantics:

For "WaterBody":

For Transportation ("Road", "Railway", "TransportSquare"):

"RoofSurface"

"GroundSurface"

"WallSurface"

"ClosureSurface"

"OuterCeilingSurface"

"OuterFloorSurface"

"Window"

"Door"

"InteriorWallSurface"

"CeilingSurface"

"FloorSurface"

"WaterSurface"

"WaterGroundSurface"

"WaterClosureSurface"

"TrafficArea"

"AuxiliaryTrafficArea"

"TransportationMarking"

"TransportationHole"

It is possible to define and use other semantics, but these have to start with a "+", inline with the rules
defined in the § 8 Extensions.

{
 "type": "+SupportingWall"
}

Because in a given City Object (say a "Building") several primitives can have the same semantics
(think of a complex building that has been triangulated, there can be dozens of triangles used to model
the same surface), a Semantic Object must be declared once, and each of the primitives that are repre-
sented by it points to it. This is achieved by first declaring all the Semantic Objects in an array, and
then having an array where each primitive links to Semantic Objects (position in the array).

If a Geometry object has semantics, then the Geometry object:

Also:

{
 "type": "MultiSurface",
 "lod": "2",
 "boundaries": [
 [[0, 3, 2, 1]],
 [[4, 5, 6, 7]],
 [[0, 1, 5, 4]],
 [[0, 2, 3, 8]],
 [[10, 12, 23, 48]]
],

must have one member with the name "semantics", whose values are two properties:
"surfaces" and "values". Both must be present.

the value of "surfaces" is an array of Semantic Objects.

the value of "values" is a hierarchy of arrays with integers. The depth depends on the Geometry
object: for MultiPoint and MultiLineString this is a simple array of integers; for any other
geometry type it is two less than the array "boundaries". An integer refers to the index in the
"surfaces" array of the same geometry, and it is 0-based. If one surface has no semantics, a
value of null must be used.

For legacy reasons, we use "surfaces" to name the array of Semantic Object. Nevertheless, this
property is used for points and linestrings of MultiPoints and MultiLineStrings, as well.

 "semantics": {
 "surfaces" : [
 {
 "type": "WallSurface",
 "slope": 33.4,
 "children": [2]
 },
 {
 "type": "RoofSurface",
 "slope": 66.6
 },
 {
 "type": "+PatioDoor",
 "parent": 0,
 "colour": "blue"
 }
],
 "values": [0, 0, null, 1, 2]
 }
}

{
 "type": "CompositeSolid",
 "lod": "2.2",
 "boundaries": [
 [//-- 1st Solid
 [[[0, 3, 2, 1, 22]], [[4, 5, 6, 7]], [[0, 1, 5, 4]], [[1, 2, 6, 5]]
],
 [//-- 2nd Solid
 [[[666, 667, 668]], [[74, 75, 76]], [[880, 881, 885]]]
]
],
 "semantics": {
 "surfaces" : [
 {
 "type": "RoofSurface"
 },
 {
 "type": "WallSurface"
 }
],
 "values": [
 [//-- 1st Solid

 [0, 1, 1, null]
],
 [//-- 2nd Solid get all null values
 [null, null, null]
]
]
 }
 }

CityGML’s "ImplicitGeometries", better known in computer graphics as templates, are one method to
compress files since the geometries (such as benches, lamp posts, and trees), need only be defined
once. In CityJSON, they are implemented differently from what is specified in CityGML: they are de-
fined separately in the file, and each template can be reused. By contrast, in CityGML, the geometry
used for a given City Object is reused by other City Objects, there is thus no central location where all
templates are stored.

The Geometry Templates are defined as a JSON object that:

"geometry-templates": {
 "templates": [
 {
 "type": "MultiSurface",
 "lod": "2.1",
 "boundaries": [
 [[0, 3, 2, 1]], [[4, 5, 6, 7]], [[0, 1, 5, 4]]
]
 },
 {

3.4. Geometry templates§

must have one member with the name "templates". The value is an array of Geometry
Objects.

must have one member with the name "vertices-templates". The value is an array of coor-
dinates of each vertex of the templates (0-based indexing). The reason the vertices index are not
global is to ensure that operations on the vertices (eg for CRS transformation, for § 4 Transform
Object, or calculating the bounding box of a dataset) will not be affected by the templates (since
they will often be defined locally, and translated/rotated/scaled to their final position).

 "type": "MultiSurface",
 "lod": "1.3",
 "boundaries": [
 [[1, 2, 6, 5]], [[2, 3, 7, 6]], [[3, 0, 4, 7]]
]
 }
],
 "vertices-templates": [
 [0.0, 0.5, 0.0],
 ...
 [1.0, 1.0, 0.0],
 [0.0, 1.0, 0.0]
]
}

A given template can be used as the geometry (or as one of the geometries) of a City Object. A new
JSON object of type "GeometryInstance" is defined, and it:

{
 "type": "SolitaryVegetationObject",
 "geometry": [
 {
 "type": "GeometryInstance",
 "template": 0,
 "boundaries": [372],
 "transformationMatrix": [
 2.0, 0.0, 0.0, 0.0,
 0.0, 2.0, 0.0, 0.0,
 0.0, 0.0, 2.0, 0.0,
 0.0, 0.0, 0.0, 1.0
]

must have one member with the name "template", whose value is the position of the template
in the "geometry-templates" (0-indexing).

must have one member with the name "boundaries", whose value is an array containing only
one vertex index, which refers to one vertex in the "vertices" property of a CityJSON file.
(This is the reference point from which the transformations are applied, it is the "referencePoint"
in CityGML.)

must have one member with the name "transformationMatrix", whose value is a 4x4 matrix
(thus 16 values in an array) defining the rotation/translation/scaling of the template. Note that
these 16 values are ordered row-by-row, as the example below shows.

 }
]
}

To reduce the size of a CityJSON object (and thus the size of files) and to ensure that only a fixed
number of digits is stored for the coordinates of the geometries, the coordinates of the vertices of the
geometries are represented integer values. We therefore need to store the scale factor and the transla-
tion needed to obtain the original coordinates (stored with floats/doubles).

A CityJSON object must therefore have one member "transform", whose values are 2 mandatory
JSON objects ("scale" and "translate"), both arrays with 3 values.

The scheme of TopoJSON (called quantization) is reused, and here we simply add a third coordinate
because our vertices are embedded in 3D space.

It should be noticed that only the "vertices" at the root of the CityJSON object are affected by the
transformation, the vertices for the Geometric templates and textures are not.

To obtain the real position of a given vertex v, we must take the 3 values vi listed in the "vertices"
member and:

v[0] = (vi[0] * ["transform"]["scale"][0]) + ["transform"]["translate"][0]
v[1] = (vi[1] * ["transform"]["scale"][1]) + ["transform"]["translate"][1]
v[2] = (vi[2] * ["transform"]["scale"][2]) + ["transform"]["translate"][2]

The following "transform" means that 2 important digits are kept (thus millimetre level if meters
are the units of the CRS), and the "translate" usually matches with the minimum values of the
axis-aligned bounding box (but does not need to).

"transform": {
 "scale": [0.001, 0.001, 0.001],
 "translate": [442464.879, 5482614.692, 310.19]
}

The CityJSON website has a page to help developers with Geometry Templates, it contains simple
examples, explains which transformations to apply to obtain world coordinates, and explains how
matrices work (for instance, in the example above, a scaling of 2.0 is applied).

4. Transform Object§

https://github.com/topojson/topojson-specification/blob/master/README.md#212-transforms
https://www.cityjson.org/dev/geom-templates/

The core of CityJSON supports the following six properties, these are compliant with the international
standard ISO19115.

"metadata": {
 "geographicalExtent": [84710.1, 446846.0, -5.3, 84757.1, 446944.0, 40.9
 "identifier": "eaeceeaa-3f66-429a-b81d-bbc6140b8c1c",
 "pointOfContact": {
 "contactName": "3D geoinformation group, Delft University of Technology
 "contactType": "organization",
 "role": "owner",
 "phone": "+31-6666666666",
 "emailAddress": "3dgeoinfo-bk@tudelft.nl",

 "website": "https://3d.bk.tudelft.nl",
 "address": "Julianalaan 134, Delft 2628BL, the Netherlands"
 },
 "referenceDate": "1977-02-28",
 "referenceSystem": "https://www.opengis.net/def/crs/EPSG/0/2355",
 "title": "Buildings in LoD2.3 of Chibougamau, Québec"
}

While the geographical extent can be computed from the dataset itself, it is often useful to store it. It
may be stored as an array with 6 values: [minx, miny, minz, maxx, maxy, maxz]. Notice that
these are in the real coordinates of the dataset (based on § 5.5 referenceSystem (CRS)) and not after
the coordinates have been compressed with the "transform" property (§ 4 Transform Object).

"metadata": {
 "geographicalExtent": [84710.1, 446846.0, -5.3, 84757.1, 446944.0, 40.9
}

5. Metadata§

The storage of additional ISO19115-compliant metadata attributes and/or of statistics related to 3D
city models can be done with the MetadataExtended Extension. Examples of extra attributes/prop-
erties that can be stored: point of contact for the dataset, lineage, statistics about the present LoDs,
the presence of textures/materials, etc.

5.1. geographicalExtent (bbox)§

https://www.iso.org/standard/53798.html
https://github.com/cityjson/metadata-extended

A unique identifier for the dataset. It is recommend to use universally unique identifier, but this is not
necessary.

"metadata": {
 "identifier": "44574905-d2d2-4f40-8e96-d39e1ae45f70"
}

The point of contact for the dataset. This is a JSON object that

5.2. identifier§

5.3. pointOfContact§

must have one member with the name "contactName". The value is the name of the contact.

must have one member with the name "emailAddress". The value is a string with the email.

may have one member with the name "role". The value describes the role that contact
person/organisation has, it is one of the following: "resourceProvider", "custodian",
"owner", "user", "distributor", "originator", "pointOfContact",
"principalInvestigator", "processor", "publisher", "author", "sponsor", "co-
author", "collaborator", "editor", "mediator", "rightsHolder", "contributor",
"funder", "stakeholder".

may have one member with the name "website". The value is the URL of point of contact.

may have one member with the name "contactType". The value is a string which is either
"individual" or "organization". For an "organization", the "website" can also be
given.

may have one member with the name "address". The value is a string with the full address.

may have one member with the name "phone". The value is a string with the phone number.

may have one member with the name "organization". The value is the name of the organisa-
tion, to be used if the "contactName" is the name of a person.

https://en.wikipedia.org/wiki/Universally_unique_identifier

"pointOfContact": {
 "contactName": "Justin Trudeau",
 "emailAddress": "justin.trudeau@parl.gc.ca",
 "phone": "+1-613-992-4211",
 "address": "24 Sussex Drive, Ottawa, Canada",
 "contactType": "individual",
 "role": "pointOfContact"
}

The date when the dataset was compiled, without the time of the day, only a "full-date" as defined
in RFC 3339, Section 5.6 should be used.

"metadata": {
 "referenceDate": "1977-02-28"
}

The coordinate reference system (CRS) is given as a URL formatted according to the OGC Name
Type Specification:

http://www.opengis.net/def/crs/{authority}/{version}/{code}

where {authority} designates the authority responsible for the definition of this CRS (usually
"EPSG" or "OGC"), and where {version} designates the specific version of the CRS ("0" (zero) is
used if there is no version).

For instance, the Dutch national CRS in 3D:

5.4. referenceDate§

JSON does not have a date type, and thus the representations defined by RFC 3339, Section 5.6
should be used. A simple date is "full-date" (thus "1977-07-11" as a string), and should be
used for the metadata above.

Other attributes in a CityJSON object can also have a date with a time, and such an attribute is
specified as a "full-time". For example "1985-04-12T23:20:50.52Z" (stored as a string).

5.5. referenceSystem (CRS)§

https://tools.ietf.org/html/rfc3339#section-5.6
https://docs.opengeospatial.org/pol/09-048r5.html#_production_rule_for_specification_element_names
https://tools.ietf.org/html/rfc3339#section-5.6

"metadata": {
 "referenceSystem": "https://www.opengis.net/def/crs/EPSG/0/7415"
}

Be aware that the CRS should be a three-dimensional one, ie the elevation/height values should be
with respect to a specific datum.

A string describing the dataset.

"metadata": {
 "title": "3D city model of Chibougamau, Canada"
}

Both textures and materials are supported in CityJSON, and the same mechanisms used in CityGML
are reused, so the conversion back-and-forth is easy. The material is represented with the X3D specifi-
cations, as is the case for CityGML. For the texture, the COLLADA standard is reused, as is the case
for CityGML. However:

An Appearance Object is a JSON object that

Unlike in (City)GML where each object can have a different CRS (eg a wall of a building could
theoretically have a different from the other walls used to represent the building), in CityJSON all
the city objects need to be in the same CRS.

5.6. title§

6. Appearance Object§

the CityGML class GeoreferencedTexture is not supported.

the CityGML class TexCoordGen is not supported, ie one must specify the UV coordinates in the
texture files.

the major difference is that in CityGML each Material/Texture object keeps a list of the primi-
tives using it, while in CityJSON it is the opposite: if a primitive has a Material/Texture then it is
stated with the primitive (with a link to it).

http://www.web3d.org/documents/specifications/19775-1/V3.2/Part01/components/shape.html#Material
https://www.khronos.org/collada/

"appearance": {
 "materials": [],
 "textures":[],
 "vertices-texture": [],
 "default-theme-texture": "myDefaultTheme1",
 "default-theme-material": "myDefaultTheme2"
}

Each surface in a Geometry Object can have one or more materials assigned to it. To store the material
of a surface, a Geometry Object may have a member "material", the value of this member is a col-
lection of key-value pairs, where the key is the theme of the material, and the value is one JSON object
that must contain either:

may have one member with the name "materials", whose value is an array of Material
Objects.

may have one member with the name "textures", whose value is an array of Texture Objects.

may have both "materials" and "textures".

may have one member with the name "vertices-texture", whose value is an array of coordi-
nates of each so-called UV vertex of the city model.

may have one member with the name "default-theme-texture", whose value is the name of
the default theme for the appearance (a string). This can be used if geometries have more than
one textures, so that a viewer displays the default one.

may have one member with the name "default-theme-material", whose value is the name
of the default theme for the material (a string). This can be used if geometries have more than one
textures, so that a viewer displays the default one.

6.1. Geometry Object having material(s)§

one member "values". The value is a hierarchy of arrays with integers. Each integer refers to
the position (0-based) in the "materials" member of the "appearance" member of the CityJ-
SON object. If a surface has no material, then null should be used in the array. The depth of the
array depends on the Geometry object, and is equal to the depth of the "boundary" array minus
2, because each surface ([[]]) gets one material.

one member "value". The value is one integer referring to the position (0-based) in the
"materials" member of the "appearance" member of the CityJSON object. This is used be-

In the following, the Solid has 4 surfaces, and there are 2 themes ("irradiation" and "irradiation-2").
These could represent, for instance, the different colours based on different scenarios of an solar irradi-
ation analysis. Notice that the last surface gets no material (for both themes), thus null is used.

{
 "type": "Solid",
 "lod": "2.1",
 "boundaries": [
 [[[0, 3, 2, 1]], [[4, 5, 6, 7]], [[0, 1, 5, 4]], [[1, 2, 6, 5]]]
],
 "material": {
 "irradiation": {
 "values": [[0, 0, 1, null]]
 },
 "irradiation-2": {
 "values": [[2, 2, 1, null]]
 }
 }
}

To store the texture(s) of a surface, a Geometry Object may have a member with the value
"texture", its value is a collection of key-value pairs, where the key is the theme of the textures, and
the value is one JSON object that must contain one member "values", which is a hierarchy of arrays
with integers. For each ring of each surface, the first value refers to the position (0-based) in the
"textures" member of the "appearance" member of the CityJSON object. The other indices refer
to the UV positions of the corresponding vertices (as listed in the "boundaries" member of the
geometry). Each array representing a ring therefore has one more value than that to store its vertices.

The depth of the array depends on the Geometry object, and is equal to the depth of the "boundary"
array.

In the following, the Solid has 4 surfaces, and there are 2 themes: "winter-textures" and "summer-tex-
tures" could for instance represent the textures during winter and summer.. Notice that the last 2 sur-
faces of the first theme gets no material, thus the value null is used.

cause often the materials are used to colour full objects, and repetition of materials is not
necessary.

6.2. Geometry Object having texture(s)§

{
 "type": "Solid",
 "lod": "2.2",
 "boundaries": [
 [[[0, 3, 2, 1]], [[4, 5, 6, 7]], [[0, 1, 5, 4]], [[1, 2, 6, 5]]]
],
 "texture": {
 "winter-textures": {
 "values": [
 [[[0, 10, 23, 22, 21]], [[0, 1, 2, 6, 5]], [[null]], [[null]]]
]
 },
 "summer-textures": {
 "values": [
 [
 [[1, 10, 23, 22, 21]],
 [[1, 1, 2, 6, 5]],
 [[1, 66, 12, 64, 5]],
 [[2, 99, 21, 16, 25]]
]

]
 }
 }
}

A Material Object:

6.3. Material Object§

must have one member with the name "name", whose value is a string identifying the material.

may have the following members (their meaning is explained there):

1. "ambientIntensity". The value is a number between 0.0 and 1.0.

2. "diffuseColor". The value is an array with 3 numbers between 0.0 and 1.0 (RGB colour).

3. "emissiveColor". The value is an array with 3 numbers between 0.0 and 1.0 (RGB
colour).

http://www.web3d.org/documents/specifications/19775-1/V3.2/Part01/components/shape.html#Material

"materials": [
 {
 "name": "roofandground",
 "ambientIntensity": 0.2000,
 "diffuseColor": [0.9000, 0.1000, 0.7500],
 "emissiveColor": [0.9000, 0.1000, 0.7500],
 "specularColor": [0.9000, 0.1000, 0.7500],
 "shininess": 0.2,
 "transparency": 0.5,
 "isSmooth": false
 },
 {
 "name": "wall",
 "ambientIntensity": 0.4000,
 "diffuseColor": [0.1000, 0.1000, 0.9000],
 "emissiveColor": [0.1000, 0.1000, 0.9000],
 "specularColor": [0.9000, 0.1000, 0.7500],
 "shininess": 0.0,
 "transparency": 0.5,
 "isSmooth": true
 }
]

4. "specularColor". The value is an array with 3 numbers between 0.0 and 1.0 (RGB
colour).

5. "shininess". The whose value is a number between 0.0 and 1.0.

6. "transparency". The value is a number between 0.0 and 1.0 (1.0 being completely
transparent).

7. "isSmooth". The value is a Boolean value, is defined in CityGML as a hint for normal in-
terpolation. If this boolean flag is set to true, vertex normals should be used for shading
(Gouraud shading). Otherwise, normals should be constant for a surface patch (flat shading).

If only "name" is defined for the Material Object, then it is up to the application that reads the
CityJSON file to attach a material definition to the "name". This might not always be possible.
Therefore, it is advised to define as many from the optional members as needed for fully displaying
the material.

6.4. Texture Object§

A Texture Object:

"textures": [
 {
 "type": "PNG",
 "image": "http://www.someurl.org/filename.jpg"
 },
 {
 "type": "JPG",
 "image": "appearances/myroof.jpg",
 "wrapMode": "wrap",
 "textureType": "unknown",
 "borderColor": [0.0, 0.1, 0.2, 1.0]
 }
]

An Appearance Object may have one member named "vertices-texture". The value is an array
of the (u,v) coordinates of the vertices used for texturing surfaces. Their position in this array (0-based)
is used by the "texture" member of the Geometry Objects.

must have one member with the name "type". The value is a string with either "PNG" or "JPG"
as value.

must have one member with the name "image". The value is a string with the name of the file.
This file can be a URL (eg "http://www.someurl.org/filename.jpg"), a relative path (eg
"appearances/myroof.jpg"), or an absolute path (eg
"/home/elvis/mycityjson/appearances/myroof.jpg").

may have one member with the name "wrapMode". The value can be any of the following:
"none", "wrap", "mirror", "clamp", or "border".

may have one member with the name "textureType". The value can be any of the following:
"unknown", "specific", or "typical".

may have one member with the name "borderColor". The value is an array with 4 numbers
between 0.0 and 1.0 (RGBA colour).

6.5. Vertices-texture Object§

the array of vertices may be empty.

one vertex must be an array with exactly 2 values, representing the (u,v) coordinates.

"vertices-texture": [
 [0.0, 0.5],
 [1.0, 0.0],
 [1.0, 1.0],
 [0.0, 1.0]
]

Because CityJSON aims at being easy-to-use and developers friendly, it is advised to keep the size of
CityJSON files small. Files of several hundreds of megabytes are bad practice, and should be avoided
since users will have great difficulties visualising and manipulating them.

One solution to handle a large dataset is to subdivide it into tiles or regions, and ensure that each part
has a reasonable size. Each part becomes a CityJSON file.

Another solution is to decompose a CityJSON object into its features (the City Objects), create several
JSON objects, and store them in a JSON Lines text (also called Newline Delimited JSON). This is a
format to store several JSON objects in a single file, and allows the processing of each object one at a
time.

A CityJSON Feature Object allows storage of one feature, for instance a "Building" with eventually
its children "BuildingPart" and/or "BuildingInstallation". Unlike a CityJSON Object, all
the vertices and appearances of the object are local.

A CityJSON Feature Object:

The value of u and v must be between 0.0 and 1.0.

vertices may be repeated

7. Handling large files§

7.1. Decomposing an area into parts/tiles§

7.2. Text sequences and streaming with CityJSONFeature§

is a JSON object.

must have one member with the name "type". The value must be "CityJSONFeature".

https://jsonlines.org/
http://ndjson.org/

{
 "type": "CityJSONFeature",
 "id": "myid",
 "CityObjects": {},
 "vertices": [],
 "appearance": {}
}

{
 "type": "CityJSONFeature",
 "id": "id-1",
 "CityObjects": {
 "id-1": {
 "type": "Building",
 "attributes": {
 "roofType": "gabled roof"
 },
 "children": ["mypart"],
 "geometry": [...]
 },
 "mypart": {
 "type": "BuildingPart",
 "parents": ["id-1"],

must have one member with the name "id". The value must be a string representing the identifi-
er of the City Object Feature, this is used to clearly identify which of the CityObjects is the
parent.

must have one member with the name "CityObjects". The value of this member is a collec-
tion of key-value pairs, where the key is the ID of the object, and the value is one City Object.
The ID of a City Object should be unique (within one "CityJSONFeature"), and all the chil-
dren of the "CityJSONFeature" must be included (and the children of the children (recursive-
ly), if there are any).

must have one member with the name "vertices". The value is an array of coordinates of each
vertex of the current City Object Feature (stored with integers). Their position in this array (0-
based) is used as an index to be referenced by the Geometry Objects for the JSON object (warn-
ing: the vertices are local to the JSON object).

may have one member with the name "appearance". The value may contain JSON objects rep-
resenting the textures and/or materials of surfaces. See § 6 Appearance Object for details.

must not have other members.

 "children": ["mybalcony"],
 "geometry": [...]
 },
 "mybalcony": {
 "type": "BuildingInstallation",
 "parents": ["mypart"],
 "geometry": [...]
 }
 },
 "vertices": [...]
}

The following root property of a CityJSON Object are not allowed in a CityJSONFeature Object:

Note that a CityJSON Feature Object does not contain all the information that is required for parsing
the feature. Most commonly, the transformation properties (the Transform Object) and CRS need to be
known by the client in order to correctly georeference the City Objects. These properties may be
known by the client upfront, or they may be accessible in a CityJSON Object, which is sent as the first
object in a JSON Lines text stream, or in other ways not described here.

In case the properties are stored in a CityJSON Object, this object needs to be a valid CityJSON Ob-
ject. This implies that the CityJSON object must contain all the required properties, including
"CityObjects" and "vertices", even though they are empty, because this information is stored in
the subsequent CityJSON Features.

Below is an example of a CityJSONFeature stream (or a JSON Lines text file), with a CityJSON Ob-
ject storing the metadata and transformation properties:

{"type":"CityJSON","version":"1.1","transform":{...},"CityObjects":{},"meta
{"type":"CityJSONFeature","id":"a","CityObjects":{...},"vertices":[...]}
{"type":"CityJSONFeature","id":"b","CityObjects":{...},"vertices":[...]}
{"type":"CityJSONFeature","id":"c","CityObjects":{...},"vertices":[...]}

"transform"

"version"

"metadata"

"geometry-templates": these should be resolved/dereferenced

"extensions": these should be in the metadata or collection

https://jsonlines.org/

CityJSON uses JSON Schemas to document and validate its data model, including its Extensions.
Schemas offer a way to validate the syntax of a JSON document, and thus the possibility to require
certain JSON members. Therefore, for writing more complex Extensions, a basic familiarity with
JSON Schemas is advised.

A CityJSON Extension is a JSON file that documents how the core data model of CityJSON is extend-
ed, and is also used for validating the CityJSON files. This is conceptually akin to the Application Do-
main Extensions (ADEs) in CityGML.

A CityJSON Extension can extend the core data model in four ways:

Suggested convention: "CityJSON" and "CityJSONFeature" objects may be stored in a file
with the extension '.city.jsonl'

Observe that CityJSON does not prescribe the format or standard that should be used to store sev-
eral JSON objects in a given file, it only defines how "CityJSON" and "CityJSONFeature" ob-
jects should be defined.

8. Extensions§

1. Defining new properties at the root of a document

2. Defining attributes on existing City Objects

3. Defining a new Semantic Object

4. Defining a new City Object, or "extending" one of the existing City Objects

http://json-schema.org/
http://json-schema.org/
https://docs.ogc.org/is/20-010/20-010.html#toc66

One of the philosophies of JSON is "schema-less", which means that one is allowed to define new
properties for the JSON objects without documenting them in a JSON schema (watch out: this does
not mean that JSON does not have schemas!). While this is in contrast to CityGML (and GML as a
whole) where the schemas are central, the schemas of CityJSON are (partly) following that
philosophy.

If one wants to document the parcel area in square-meters for a "Building" ("area-parcel":
{"value": 437, "uom": "m2"}), the easiest way is just to add a new property to the City Object
attributes:

{
 "type": "Building",
 "attributes": {
 "storeysAboveGround": 2,
 "area-parcel": {
 "value": 437,
 "uom": "m2"
 }
 },
 "geometry": [...]
}

However, a regular attribute (without the "+" prefix) cannot be made mandatory in the core CityJSON
schema. Only with an Extension can an attribute be made mandatory (see § 8.4 Case 2: Defining attrib-

While Extensions are less flexible than CityGML ADEs (inheritance and namespaces are for in-
stance not supported, and less customisation is possible), it should be noted that the flexibility of
ADEs comes at a price: the software processing an extended CityGML file will not necessarily
know what structure to expect.
There is ongoing work to use the ADE schemas to automatically do this, but this currently is not
supported by most software. Viewers might not be affected by ADEs because the geometries are
usually not changed by an ADE (although they can!). However, software parsing the XML to ex-
tract attributes and features might not work directly (and thus specific code would need to be
written).

CityJSON Extensions are designed such that they can be read and processed by standard CityJ-
SON software, often no changes in the parsing code is required. This is achieved by enforcing a set
of 6 simple rules (see § 8.7 Rules to follow to define new City Objects) when adding new City Ob-
jects. If these are followed, then a CityJSON file containing Extensions will be seen as a "standard"
CityJSON file.

utes on existing City Objects).

Therefore, an Extension is used for enforcing certain properties, attributes, or City Object types in
CityJSON objects. An Extension makes sense if it is expected that different data producers and con-
sumers in the target domain need to exchange data, or if an additional City Object or Semantic type is
required for accurately modelling the data.

An Extension should be given a name (eg "Noise") and the URL of the Extension file should be de-
fined, including the version of the Extension that is used for this file. It is expected that the Extension
is publicly available at the URL, and can be downloaded.

Several Extensions can be used in a single CityJSON Object, each one is indexed by its name in the
"extensions" JSON object. In the example below we have two Extensions: one named "Noise" and
one named "Solar_Potential".

{
 "type": "CityJSON",
 "version": "1.1",
 "extensions": {
 "Noise": {
 "url" : "https://someurl.org/noise.json",
 "version": "2.0"
 },
 "Solar_Potential": {
 "url" : "https://someurl.org/solar.json",
 "version": "0.8"
 }
 },
 "CityObjects": {},
 "vertices": []
}

A CityJSON Extension is a JSON object, and it must have the following 8 members:

8.1. Using an Extension in a CityJSON file§

8.2. The Extension file§

1. one member with the name "type". The value must be "CityJSONExtension".

{
 "type": "CityJSONExtension",
 "name": "Noise",
 "description": "Extension to model the noise",
 "url": "https://someurl.org/noise.ext.json",
 "version": "0.5",
 "versionCityJSON": "1.1",
 "extraRootProperties": {},
 "extraAttributes": {},
 "extraCityObjects": {}
}

2. one member with the name "name". The value must be a string identifying the extension.

3. one member with the name "url". The value must be a string with the HTTP URL of the loca-
tion of the schema where the JSON object is located.

4. one member with the name "version". The value must be a string identifying the version of the
Extension.

5. one member with the name "versionCityJSON". The value must be a string (X.Y) identifying
the version of CityJSON that uses the Extension.

6. one member with the name "extraRootProperties". The value must be a JSON object. Its
content is part of a JSON schema (explained below), or an empty object.

7. one member with the name "extraAttributes". The value must be a JSON object. Its content
is part of a JSON schema (explained below), or an empty object.

8. one member with the name "extraCityObjects". The value must be a JSON object. Its con-
tent is part of a JSON schema (explained below), or an empty object.

If an element of the Extension reuses, or references, structures and/or objects defined in the
schemas of CityJSON, then assume that the Extension is in the same folder as the schemas. An ex-
ample would be to reuse the Solid type:

"items": {
 "oneOf": [
 {"$ref": "geomprimitives.json#/Solid"}
]
}

It is allowed to add a new property at the root of a CityJSON file, but if one wants to document it in a
schema, then this property must start with a "+". Imagine we wanted to store some census data for a
given neighbourhood for which we have a CityJSON file, then we could define the extra root property
"+census" as follows:

"extraRootProperties": {
 "+census": {
 "type": "object",
 "properties": {
 "percent_men": {
 "type": "number",
 "minimum": 0.0,
 "maximum": 100.0
 },
 "percent_women": {
 "type": "number",
 "minimum": 0.0,
 "maximum": 100.0
 }
 }
 }
}

And a CityJSON file would look like this:

{
 "type": "CityJSON",
 "version": "1.1",
 "extensions": {
 "Census": {
 "url": "https://someurl.org/census.ext.json",
 "version": "0.7"
 }
 },
 "CityObjects": {...},
 "vertices": [...],
 "+census": {
 "percent_men": 49.5,

8.3. Case 1: Adding new properties at the root of a document§

 "percent_women": 51.5
 }
}

It is also possible to add, and document in a schema, specific attributes, for example if we wanted to
have the colour of the buildings as a RGBA value (red-green-blue-alpha):

{
 "type": "Building",
 "attributes": {
 "storeysAboveGround": 2,
 "+colour": {
 "rgba": [255, 255, 255, 1]
 }
 },
 "geometry": [...]
}

Another example would be to store the area of the parcel of a building, and also to document the unit
of measurement (UoM):

{
 "type": "Building",
 "attributes": {
 "storeysAboveGround": 2,
 "+area-parcel": {
 "value": 437,
 "uom": "m2"
 }
 },
 "geometry": [...]
}

For these two cases, the CityJSON Extension object would look like the snippet below. Notice that
"extraAttributes" may have several properties (the types of the City Objects are the possibilities)
and then each of these has as properties the new attributes (there can be several).

8.4. Case 2: Defining attributes on existing City Objects§

An extra attribute must start with a "+"; it is good practice to prepend the attribute with the name of
the Extension, to avoid that 2 attributes from 2 different Extensions have the same name.

The value of the property is a JSON schema, this schema can reference and reuse JSON objects al-
ready defined in the CityJSON schemas. Thus, the keywords of the property values are defined by the
JSON Schema specification. For instance, "additionalProperties" is a JSON-schema keyword
stating that one is not allowed to add properties to this JSON object, beyond the ones defined in the
schema (eg "value", "uom").

"extraAttributes": {
 "Building": {
 "+colour": {
 "type": "object",
 "properties": {
 "rgba": {
 "type": "array",
 "items": {"type": "number"},
 "minItems": 4,
 "maxItems": 4
 }
 },
 "required": ["rgba"],
 "additionalProperties": false
 },
 "+area-parcel": {
 "type": "object",
 "properties": {
 "value": { "type": "number" },
 "uom": { "type": "string", "enum": ["m2", "feet2"] }
 },
 "required": ["value", "uom"],
 "additionalProperties": false
 }
 }
}

To define a new semantic surface (besides the ones prescribed, see § 3.3 Semantics of geometric primi-
tives), a "+" must be prepended to its name, eg "+ThermalSurface".

8.5. Case 3: Defining a new Semantic Object§

{
 "type": "+ThermalSurface"
}

The creation of a new City Object is done by defining it in the CityJSON Extension object in the
"extraCityObjects" property:

"extraCityObjects": {
 "+NoiseBuilding": {
 "allOf": [
 { "$ref": "cityobjects.json#/_AbstractBuilding" },
 {
 "properties": {
 "type": { "enum": ["+NoiseBuilding"] },
 "attributes": {
 "properties": {
 "buildingLDenMin": {"type": "number"}
 }
 }
 },
 "required": ["type"]
 }
]
 }
}

"extraCityObjects": {
 "+NoiseBuildingPart": {
 "allOf": [
 { "$ref": "cityobjects.json#/_AbstractBuilding" },
 {
 "properties": {
 "type": { "enum": ["+NoiseBuildingPart"] },
 "attributes": {
 "properties": {
 "buildingLDenMin": {"type": "number"}
 }

8.6. Case 4: Creating and/or extending new City Objects§

 }
 },
 "required": ["type", "parents"]
 }
]
 }
}

Since all City Objects are documented in the schemas of CityJSON (in
cityobjects.schema.json), it is basically a matter of copying the parts needed in a new file and
modifying its content.

A new name for the City Object must be given and it must begin with a "+".

Because City Objects can be of different levels (1st-level ones can exist by themselves; 2nd-level ones
need to have a parent), we need to explicitly define that "parents" is mandatory for 2nd-level
objects.

Please note that since JSON schemas do not allow inheritance, the only way to extend a City Object is
to define an entirely new one (with a new name, eg "+NoiseBuilding"). This is done by copying the
schema of the parent City Object and extending it.

The challenge when creating Extensions to the core model is that we do not want to break the software
packages (viewers, spatial analysis, etc) that already read and process CityJSON files. While one could
define a new City Object and document it, if this new object does not follow the rules below then it
will mean that new specific software needs to be built for it (and this would go against the fundamental
ideas behind CityJSON).

8.7. Rules to follow to define new City Objects§

1. The name of a new City Object must begin with a "+", eg "+NoiseBuilding".

2. A new City Object must conform to the rules of CityJSON, ie it must contain a property "type".

3. Existing City Objects cannot be extended and have new types as children, eg it is not allowed to
add a new City Object "+Balcony" to a "Building". Instead, a new type, eg
"+FancyBuilding", should be created and it can have a "+Balcony" as a potential children.

4. All the geometries must be in the property "geometry", and cannot be located somewhere else
deep in a hierarchy of a new property.

https://www.cityjson.org/schemas/

The JSON schemas of the specifications are publicly available at https://cityjson.org/schemas/.

CityJSON v1.1 is conformant with the CityGML v3.0 data model, although not all extension modules
have been implemented.

The details of which modules are supported (and where the so-called null mapping are applied, see
CityGML Modularization), are available at https://www.cityjson.org/conformance/v30/

✧ ✧ ✧

5. The Geometry object’s boundary must be one of the eight types described in § 3 Geometry Ob-
jects. Similarly, the geometry appearances and templates must follow the core specification. This
ensures that all the code written to process, manipulate, and view CityJSON files will be working
without modifications.

6. The reuse of types defined in CityJSON, eg "Solid" or semantic surfaces, is allowed.

9. CityJSON Schemas§

10. CityGML v3.0 conformance§

https://json-schema.org/
https://cityjson.org/schemas/
https://docs.ogc.org/is/20-010/20-010.html
https://docs.ogc.org/is/20-010/20-010.html#toc21
https://www.cityjson.org/conformance/v30/

