
1
Copyright © 2023 Open Geospatial Consortium

Open Geospatial Consortium
Submission Date 2023-04-19

Approval Date: <yyyy-mm-dd>

Publication Date: <yyyy-mm-dd>

External identifier of this OGC® document: <http://www.opengis.net/doc/[{doc-type/}]{standard}/{m.n}>

Internal reference number of this OGC® document: 21-060r1

Version: 1.0

Category: OGC® Abstract Specification

Editor: Peter Baumann

OGC Abstract Specification Topic 6: Schema for Coverage
Geometry and Functions – Part 3: Processing Fundamentals

Copyright notice

Copyright © 2023 Open Geospatial Consortium
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is not an OGC Standard. This document is distributed for review and
comment. This document is subject to change without notice and may not be referred to
as an OGC Standard.

Recipients of this document are invited to submit, with their comments, notification of
any relevant patent rights of which they are aware and to provide supporting
documentation.

Document type: OGC® Abstract Specification
Document subtype:
Document stage: Draft
Document language: English

2
Copyright © 2023 Open Geospatial Consortium

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth below,
to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property
without restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish,
distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to
do so, provided that all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above
copyright notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS
THAT MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED
IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL
MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF
INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY
DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH
THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all
copies in any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as
provided in the following sentence, no such termination of this license shall require the termination of any third party end-user
sublicense to the Intellectual Property which is in force as of the date of notice of such termination. In addition, should the Intellectual
Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent,
copyright, trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may terminate this license
without any compensation or liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or
cause to be destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual
Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without
prior written authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may
authorize you or any third party to use certification marks, trademarks or other special designations to indicate compliance with any
LICENSOR standards or specifications. This Agreement is governed by the laws of the Commonwealth of Massachusetts. The
application to this Agreement of the United Nations Convention on Contracts for the International Sale of Goods is hereby expressly
excluded. In the event any provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be
modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force and effect. No
decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies available to it.

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved iii

Contents

Introduction ... vi

1 Scope .. 1

2 Normative references .. 1

3 Terms, definitions, abbreviated terms and notation .. 1
3.1 Terms and definitions .. 1

4 Conformance ... 2
4.1 Notation ... 2
4.2 Interoperability and conformance testing ... 2
4.3 Organization .. 2

5 Coverage model .. 2
5.1 Overview ... 2
5.2 Coverage model .. 2
5.3 Coverage identifier .. 3
5.4 Domain .. 4
5.4.1 Direct Position .. 4
5.4.2 Grid ... 4
5.5 Interpolation ... 6
5.6 Range values .. 7
5.7 Range type .. 7
5.8 Coverage probing functions synopsis .. 7

6 Coverage processing language .. 9
6.1 Syntax and Semantics Definition Style ... 9
6.1.1 Expression Syntax ... 9
6.1.2 Expression Semantics ... 10
6.2 Coverage Processing Expressions ... 10
6.2.1 processCoveragesExpr .. 10
6.2.2 processingExpr .. 12
6.2.3 coverageExpr .. 12
6.2.4 coverageIdExpr ... 12
6.3 Coverage-Generating Expressions .. 13
6.3.1 coverageConstructorExpr .. 13
6.3.2 Examples .. 16
6.4 Coverage Extraction Expressions ... 18
6.4.1 scalarExpr .. 18
6.4.2 getComponentExpr .. 18
6.4.3 booleanScalarExpr ... 19
6.4.4 numericScalarExpr .. 19
6.4.5 stringScalarExpr ... 20
6.5 Coverage range value-changing expressions ... 20
6.5.1 inducedExpr ... 20
6.5.2 unaryInducedExpr ... 20
6.5.3 trigonometricExpr .. 23
6.5.4 binaryInducedExpr .. 28
6.5.5 N-ary Induced operations .. 30
6.5.6 Coverage Domain-Changing Expressions .. 33
6.5.7 scaleExpr .. 37
6.6 Coverage Derivation Expressions ... 38
6.6.1 crsTransformExpr .. 38
6.7 Coverage Aggregation Expressions .. 39

ISO/FDIS 19123-3:2023(E)

iv © ISO 2023 – All rights reserved

6.7.1 condenseExpr .. 39
6.7.2 generalCondenseExpr .. 39
6.7.3 reduceExpr ... 42
6.8 Coverage Encode/Decode Expressions .. 43
6.8.1 encodeCoverageExpr .. 43
6.8.2 decodeCoverageExpr .. 44
6.9 Expression evaluation .. 45
6.9.1 Evaluation sequence ... 45
6.9.2 Nesting ... 45
6.9.3 Parentheses .. 45
6.9.4 Operator precedence rules ... 45
6.9.5 Range type compatibility and extension ... 46
6.10 Evaluation response .. 46

Annex A (normative) Conformance Tests ... 48

Annex B (normative) Expression Syntax .. 49

Annex C (informative) Syntax diagrams ... 57

Annex D (informative) Sample service descriptions .. 74

Bibliography ... 77

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved v

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO
collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any
patent rights identified during the development of the document will be in the Introduction and/or on
the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the World
Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see
www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 211, Geographic information/Geomatics, in
collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 287,
Geographic Information, in accordance with the Agreement on technical cooperation between ISO and
CEN (Vienna Agreement), and in collaboration with the Open Geospatial Consortium (OGC).

A list of all parts in the ISO 19123 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.

https://www.iso.org/directives-and-policies.html
https://www.iso.org/iso-standards-and-patents.html
https://www.iso.org/foreword-supplementary-information.html
https://www.iso.org/members.html

ISO/FDIS 19123-3:2023(E)

vi © ISO 2023 – All rights reserved

Introduction

This document defines, at a high, implementation-independent level, operations on coverages, i.e. digital
representations of space-time varying geographic phenomena, as defined in ISO 19123-1. Specifically,
regular and irregular grid coverages are addressed. The operations can be applied through an expression
language allowing composition of unlimited complexity and combining an unlimited number of coverages
for data fusion.

The language is functionally defined and free of any side effects. Its conceptual foundation relies on only
two constructs: A “coverage constructor” builds a coverage, either from scratch or by deriving it from one
or more other coverages. A “coverage condenser” derives summary information from a coverage by
performing an aggregation like count, sum, minimum, maximum and average.

The coverage processing language is independent from any particular request and response encoding, as
no concrete request/response protocol is assumed. Hence, this document does not define a concrete
service, but acts as the foundation for defining service standards functionality. One such standardization
target is the OGC Web Coverage Service (WCS).[3]

Throughout this document, the following formatting conventions apply.

— Bold-Face in the text, such as processCoveragesExpr, represents syntax elements, normatively
defined in Annex B.

— Text in italics, such as succ(), represents mathematical functions and variables.
— Courier font, such as return and encode(), is used for code in the sense of the coverage processing

language.

FINAL DRAFT INTERNATIONAL STANDARD ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 1

Geographic information — Schema for coverage geometry
and functions —
Part 3:
Processing fundamentals

1 Scope

This document defines a coverage processing language for server-side extraction, filtering, processing,
analytics, and fusion of multi-dimensional geospatial coverages representing, for example, spatio-
temporal sensor, image, simulation, or statistics datacubes. Services implementing this language provide
access to original or derived sets of coverage information, in forms that are useful for client-side
consumption.

This document relies on the abstract coverage model defined in ISO 19123-1. In this edition, regular and
irregular multi-dimensional grids are supported for axes that can carry spatial, temporal or any other
semantics. Future editions will additionally support further axis types as well as further coverage types
from ISO 19123-1, in particular, point clouds and meshes.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 19111, Geographic information — Referencing by coordinates

ISO 19123-1, Geographic information — Schema for coverage geometry and functions — Part 1:
Fundamentals

3 Terms, definitions, abbreviated terms and notation

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 19123-1 and the following apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at https://www.iso.org/obp

— IEC Electropedia: available at https://www.electropedia.org/

3.1.1
probing function
<coverage> function extracting information from the coverage

https://www.iso.org/obp/ui
https://www.electropedia.org/

ISO/FDIS 19123-3:2023(E)

2 © ISO 2023 – All rights reserved

4 Conformance

4.1 Notation

Table 1 lists the other International Standards and packages in which UML classes used in this document
have been defined.

Table 1 — Sources of externally defined UML classes

Prefix International
Standard

Package

 ISO 19123-1 Coverage Core,
Grid Coverage

4.2 Interoperability and conformance testing

As this document is an abstract standard, it allows for multiple different implementations and does not
define a standardized interoperable implementation. Rather, standardization targets are specifications
of coverage operations and services which may use this language to describe the semantics of their
operations.

Conformance testing shall be accomplished by validating a candidate concretization against all
requirements by exercising the tests set out in Annex A. As a prerequisite, a candidate shall also pass all
conformance tests of ISO 19123-1 Coverage Core and Grid Coverage.

4.3 Organization

Table 2 provides details of the conformance classes described in this document. The name and contact
information of the maintenance agency for this document can be found at
www.iso.org/maintenance_agencies.

Table 2 — Conformance classes

Conformance class Clause Identifying URL

Coverage Processing 6 https://standards.isotc211.org/19123/-3/1/conf/coverage-processing

5 Coverage model

5.1 Overview

This document defines a language whose expressions accept any number of input coverages (together
with further common inputs like numbers and strings) to generate any number of output coverages or
non-coverage results. Coverages are defined in ISO 19123-1.

5.2 Coverage model

Following the mathematical notion of a function that maps elements of a domain (such as spatio-temporal
coordinates) to a range (such as values of a “pixel”, “voxel”, etc.), a coverage consists of (Figure 1):

— an identifier which uniquely identifies a coverage in some context (here, the context of an
expression);

http://www.iso.org/maintenance_agencies

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 3

— a domain of coordinate points (expressed in a common Coordinate Reference System, CRS): “where
in the multi-dimensional space can I find values?”;

— a probing function which answers for each coverage coordinate in the domain (“direct position”):
“what is the value here?”;

— a range type: “what do those values mean?”.

Figure 1 — Coverage and GridCoverage (ISO 19123-1)
NOTE 1 Coverage in ISO 19123-1 defines an interface which describes such an object’s behaviour, but does not yet
assume any particular data structure. One interoperable concretization of it is the implementation standard
ISO 19123-2.

Below “probing functions” are introduced which extract components from a given coverage. For every
component of a coverage a corresponding probing function exists so that altogether all properties of a
coverage can be retrieved. They serve to define the document’s language semantics.

NOTE 2 In the processing definition of this document, further probing functions, beyond the ISO 19123-1
probing function evaluate(), are used as a concise means to describe all aspects of coverage-valued function results.

5.3 Coverage identifier

Coverages in this document have an identifier which is used in a query to address a coverage to derive
from. Therefore, it is necessary for this identifier to be unique within some context (here: a query).
Beyond this, no particular assumption is made on the realization of this identifier. In particular, when the
context of the coverage object changes (such as during delivery to a client) uniqueness is not necessarily
guaranteed any longer, and therefore querying the object in the new context is potentially no longer
possible.

NOTE In a concrete service, coverages available would typically be those which are stored on this server, where
access control allows addressing the coverage according to the user sending the request, etc. All these aspects are
out of scope of this document.

ISO/FDIS 19123-3:2023(E)

4 © ISO 2023 – All rights reserved

The corresponding probing function for a coverage C is:

id(C)

5.4 Domain

5.4.1 Direct Position

A coverage offers values for particular positions in its domain; these are called “direct positions”; further
values can be derived through interpolation, depending on whether and what type of interpolation a
coverage allows.

For some direct position p = (p1,…,pd) from a domain whose d-dimensional CRS contains axes (a1,…,ad),
p[ai] is written for accessing the coordinate tuple component corresponding with axis ai:

p[ai] = pi

5.4.2 Grid

The domain contains the coordinate tuples describing the coverage’s direct positions, which for the
purpose of this document all sit on a multi-dimensional grid. Informally speaking this means that every
direct position inside the grid has exactly one next neighbour in both directions of every axis, except for
the rim, where fewer neighbours are available. Figure 2 shows some regular and irregular grid examples.

Figure 2 — Sample regular and irregular grid structures (ISO 19123-1)

The grid description depends on the complexity of the grid. As a grid is composed from an ordered
sequence of axes, the resulting complexity is determined by the types of axes (such as integer versus
Latitude versus time) as well as the rules determining the direct positions along these axes. The following
axis types defined in ISO 19123-1 are currently supported by this document:

— a Cartesian (“index”) axis, which just requires lower and upper bound (which are of type integer);

— a regular axis, which can be described by lower and upper bounds together with a constant
distance, the resolution;

— an irregular axis, which has individual distances, described by a sequence of coordinates.

As per ISO 19123-1, the coverage domain with its axes has a single CRS which can serve for geo-
referencing. The definition and interpretation of CRSs is in accordance with ISO 19111.

The CRS of a domain is obtained through function crs(C).

crs(C)

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 5

Auxiliary probing function axisList()extracts the ordered list of axes (a1,…,ad) from a d-dimensional CRS:

axisList(crs)

NOTE In accordance with ISO 19123-1, all axis names in such a list are pairwise disjoint so that the names can
act as a unique identifier within their CRS.

Each axis contributes coordinates from a nonempty, totally ordered set of values which can be numeric
or, in the general case, strings (such as “2020-08-05T”).

For a given coverage C, probing function domain() delivers the coverage domain in its CRS:

domain(C)

The domain information describes the coverage’s grid and its extent for each axis:

— the lower and upper bound of the direct positions;

— additionally the following information:

— for index axes: nothing further;

— for regular axes: the resolution, expressed in the unit of measure (uom) of the axis;

— for irregular axes: the sequence of points.

This information is accessible through extended variants of the abovementioned functions. For some
coverage domain D with axis a, the following expressions return lower and upper bounds, respectively:

domain(C, a).lo
domain(C, a).hi

For convenience, a function pair identical in effect but based on the domain is defined:

D[a].lo = domain(C, a).lo
D[a].hi = domain(C, a).hi

The grid of the coverage domain is represented implicitly through functions “walking” the grid from one
direct position to one of its neighbours. This is based on the topological structure of a grid where each
direct position has exactly one lower and one higher neighbour along each axis, with an exception of the
domain rims where no such neighbour is available; therefore, these functions are partial.

Let D be given as the domain of coverage C, so that D = domain(C). Let further a be some axis from the
CRS of D. Then, functions pred() and succ() each return a neighbouring direct position for some given
position. Function pred() returns the immediate preceding direct position along axis a, function succ()
returns the immediate succeeding direct position along a. Where there is no such direct position (because
the input position is sitting at the rim of the domain extent) the value is undefined, written as ⊥.

pred(D, a, p) = x where
 if p[a] = D[a].lo domain(C,a).lo then x = ⊥
 else x is given by: x[ax] = p[ax] for all ax ∈ domain(C) \ {a}, and x[a] = max(x’ | x’ ∈ domain(C, a)
and x’ < p[a])

succ(D, a, p) = x where
 if p[a] = D[a].hi domain(C,a).hi then x = ⊥

ISO/FDIS 19123-3:2023(E)

6 © ISO 2023 – All rights reserved

 else x is given by: x[ax] = p[ax] for all ax ∈ domain(C) \ {a}, and x[a] = min(x’ | x’ ∈ domain(C, a)
and x’ > p[a])

EXAMPLE In Figure 3, neighbours of p in coverage domain D with axes x and y can be reached as follows:
 a = succ(D, y, pred(D, x, p)) = pred(D, x, succ(D, y, p))
 b = succ(D, y, p)
 c = succ(D, y, succ(D, x, p)) = succ(D, x, succ(D, y, p))
 d = pred(D, x, p)
 e = succ(D, x, p)
 f = pred(D, x, pred(D, y, p)) = pred(D, y, pred(D, x, p))
 g = pred(D, y, p)
 h = succ(D, x, succ(D, y, p)) = succ(D, y, succ(D, x, p))

In this document, for the user’s convenience, basic arithmetic functions are assumed on this grid navigation:

Figure 3 — Sample grid neighbourhood

5.5 Interpolation

In ISO 19123-1 a coverage contains an indication on possible interpolation between direct positions. Such
interpolation can be set for all axes in a coverages simultaneously or, following a more fine-grain
approach, individually per axis.

NOTE 1 In ISO 19123-1 every coverage has exactly one interpolation method associated (for all axes or per axis).
In practice, coverages can allow users to pick one of several interpolation methods, such as with imagery where
linear, quadratic and cubic interpolation are applicable on principle, and users can choose any one of those.
Conceptually, however, two coverages differing only in the interpolation methods are distinct as they will deliver
identical range values on their direct positions, but differing values inbetween those. On the abstract level of
ISO 19123-1 and ISO 19123-3, this ambiguity is not desirable.

For the purpose of this document a special interpolation method none is assumed as defined, for example,
in ISO 19123-1:—1, Annex B. None indicates that no interpolation is possible along the axis under
consideration.

NOTE 2 The interpolation method none is different from nearest-neighbor: An interpolation of nearest-
neighbor provides values inbetween direct positions which are derived from the closest direct position.
Interpolation none means that no values are provided between direct positions, in other words: the evaluation
function is undefined on any non-direct position and will in practice result in an exception.

1 Under preparation. Stage at the time of publication: ISO/FDIS 19123-1:2023.

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 7

Function interpolation(C,a) returns the interpolation method applicable on each axis of coverage C, in
order of the CRS axis sequence. For dimension(C)=d the probing function delivers interpolation method
list (m1,…,md) with interpolation method mi applying to axis number i:

interpolation(C)

This function is overloaded to extract the interpolation method associated with axis a of C:

interpolation(C, a)

NOTE 3 Interpolation is particularly relevant with functions scale() and project().

5.6 Range values

The range value at a direct position p can be obtained with function evaluateC(p) which, for a given
coverage C, returns the value associated with p∈domain(C) expressed in the coverage’s CRS.

The corresponding probing function is:

value(C, p) = evaluateC(p) for some direct position p∈domain(C)

Interpolation guides whether the value() function is defined on coordinates outside the set of direct
positions, and how this value is determined from the values available at the direct positions.

NOTE The range value set can contain one or more null values, as determined by the range type. This document
does not make any assumption on this.

5.7 Range type

A coverage’s range type description can be obtained through probing function rangeType() which
delivers a set of tuples containing at least field names and field type:

rangeType(C)

This function gets overloaded to obtain the coverage range type of a particular range field component f:

rangeType(C, f)

For the purpose of this document, only the common programming language data types are considered,
and only on a high, abstract level: Boolean, integer, float, complex, as well as records over those are
assumed to be available. However, an implementation specification of this document may add its own
data types as long as these are coherent with this document overall.

NOTE The concrete range types available in coverage processing are determined by concretizations of this
document. Typically, the standard programming language data types will be available, such as (unsigned) short, int,
and long, as well as float and double. For example, the range type (aka pixel) of an 8-bit RGB image normally is given
by the triple < red: unsigned char; green: unsigned char; blue: unsigned char>. Further, a concretization can add
more information such as null values, accuracy, etc.

5.8 Coverage probing functions synopsis

Requirement 1 https://standards.isotc211.org/19123/-3/1/req/core/probingFunctions
The semantics of the probing functions used for the ISO 19123-1 language semantics definition shall be
given by Table 3.

ISO/FDIS 19123-3:2023(E)

8 © ISO 2023 – All rights reserved

Table 3 —Coverage probing functions synopsis

Coverage
characteristic

Probing function
for a coverage C,

based on ISO 19123-1

Comment

Coverage identifier id(C) Identifier of the coverage.

Coverage CRS crs(C)
= crs (domain(C))
as per ISO 19123-1

CRS of the coverage.

CRS axis list axisList(c)
= (a1,…,ad) for some d-dimensional CRS c
establishing this axis sequence

List of all axis names of the CRS, in
proper sequence.

Domain extent of
coverage

domain(C)

domain(C, a)
= domain extent along axis a

domain(C, a).lo
= lower bound of domain extent along axis
a

domain(C, a).hi
= upper bound of domain extent along axis
a

Extent of the coverage in CRS
coordinates.

Grid neighbour pred(C, a, p)

succ(C, a, p)

as defined in 6.4.2

These functions allow to traverse a grid
in steps relative to some given position,
such as for convolution operations and,
generally, Tomlin’s non-local
operations.

Range type rangeType(C)

rangeType(C, f)
= t where (f:t,...) ∈rangeType(C)

The range type record is described by a
list describing its components in
sequence; for the purpose of this
document only component name and its
data type are considered.

Range field name list rangeFieldNames(C)
= (f1, …, fn) where
rangeType(C) = ((f1;t1,…), …, (fn:tn,…)),
with field names fi and types ti

Ordered list all of the coverage’s range
fields names and their data types;
possible further constituents in a record
component are ignored in this
document, their values are to be defined
elsewhere (e.g. implementation
dependent).

Range values value(C,p)
= evaluateC(p),p∈domain(C)
with evaluate() as per 19123-1

Range values of the coverage at a direct
position (or some position inbetween,
interpolation permitting).

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 9

Coverage
characteristic

Probing function
for a coverage C,

based on ISO 19123-1

Comment

Interpolation interpolation(C)
as per ISO 19123-1

interpolation(C, a)
= interpolation method of axis a

List of the interpolation method allowed
per axis, in axis order; in case the
coverage has only one interpolation
defined for all axes, this method is
multiplied into all positions of the
output list.

Interpolation associated with a
particular axis.

6 Coverage processing language

This clause establishes the conformance class Coverage Processing.

This coverage processing language defines expressions on coverages which evaluate to ordered lists of
either coverages or scalars (whereby “scalar” here is used as a summary term of all data structures that
are not coverages). In the remainder of this document, the terms processing expression and query are used
interchangeably.

A coverage processing expression consists of a processCoveragesExpr (see 6.2). Each International
Standard claiming to support this document shall provide the coverage processing operations as
specified in the following subclauses. A sample application is provided in Annex D.

NOTE 1 This language has been designed so as to be “safe in evaluation” – i.e. implementations are possible
where any valid request can be evaluated in a finite number of steps, based on the operation primitives. Hence,
services based on the language constructs can be built in a way that no single request can render the service
permanently unavailable. This notwithstanding, it still is possible to send requests that will impose high workload
on a server.

NOTE 2 Data items within a query result list can be heterogeneous in size and structure. In particular, the
coverages within an evaluation result list can have different dimensions, domains, range types, etc. However, a
result list always consists of either coverages or scalar values, not a mix of both.

6.1 Syntax and Semantics Definition Style

6.1.1 Expression Syntax

The language primitives plus the nesting capabilities form an expression language which is independent
from any particular encoding and service protocol; collectively it is referred to as the coverage
processing language. In the following subclauses, the language elements are detailed. The complete
syntax is listed in Annex B.

A coverage processing expression is called admissible if and only if it adheres to the syntax of the
language definition of this document.

Requirement 2 https://standards.isotc211.org/19123/-3/1/req/core/syntax
Coverage processing expressions shall adhere to the syntax definition of Annex B.

NOTE A railroad diagram of the syntax in Annex B is provided in Annex C for visualization of the grammar.

EXAMPLE The coverage expression fragment $c * 2is admissible as it adheres to language syntax whereas
abc seen as a coverage expression violates the syntax and, hence, is not admissible.

ISO/FDIS 19123-3:2023(E)

10 © ISO 2023 – All rights reserved

6.1.2 Expression Semantics

The semantics of a coverage processing expression is defined recursively by indicating, for all admissible
expressions, the semantics. An expression is valid if and only if it is admissible and complies with all rules
imposed by the language semantics.

Requirement 3 https://standards.isotc211.org/19123/-3/1/req/core/semantics
Coverage processing expressions shall adhere to all semantics rules of this document.

EXAMPLE The following coverage expression is valid if and only if the coverage bound to variable $c has a
numeric range component named red.

$c.red * 2.5

NOTE In the remainder of this clause, tables are used to describe the effect of an operation on each coverage
constituent.

The semantics of coverage processing expressions is defined via so-called probing functions which extract
information from a coverage.

6.2 Coverage Processing Expressions

6.2.1 processCoveragesExpr

A processCoveragesExpr element processes a list of coverages in turn. Each coverage is optionally
checked first for fulfilling some predicate, and gets selected, i.e. contributes to an element of the result
list, only if the predicate evaluates to true. Each coverage selected will be processed, and the result will
be appended to the result list. This result list, finally, is returned as the ProcessCoverages response unless
any exception was generated.

Requirement 4 https://standards.isotc211.org/19123/-3/1/req/core/processCoveragesExpr
A processCoveragesExpr shall be defined as follows.

Let

v1, … vn be n pairwise different iteratorVars (n≥1),
L1, … Ln be n coverageLists (n≥1),
b be a booleanScalarExpr possibly containing occurrences of one or more vi (1≤i≤n),
P be a processingExpr possibly containing occurrences of vi (1≤i≤n).

Then,

m,n≥1 be natural numbers,
v1, … cn, be n iteratorVars,
c1, … cm, be n pairwise different variableNames,
e1, … em, be n+m optional coverageExprs or scalarExprs or bracket-enclosed intervalExprs,
which may contain occurrences of v1, … cn and c1, … cm,
c be a coverageExpr or scalarExpr,
where everyci is defined before used in an expression.

Then,

for any processCoveragesExpr E
where
 E = for v1 in (L1),

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 11

 v2 in (L2),
 … ,
 vn in (Ln)
 [letc1 := e1, …, cm := em]
 [where b]
 return P

the result R of evaluating processCoveragesExpr E is constructed as:

Let R be the empty sequence;
while L1 is not empty:
{ assign the first element in L1 to iteration variable v1;
 while L2 is not empty:
 { assign the first element in L2 to iteration variable v2;
 …
 while Ln is not empty:
 { assign the first element in Ln to iteration variable vn;
 substitute every occurrence of ci in E by ei;
 substitute every occurrence of viin E
 by the corresponding coverage;
 evaluate b;
 if (b)
 then
 evaluate P;
 append evaluation result to R;
 remove the first element from Ln;
 }
 …
 }
 remove the first element from L2;
 }
 remove the first element from L1;
}

The elements contained in the coverageList clause, constituting coverage identifiers, are taken from the
coverage identifiers advertised by the server.

NOTE 1 Coverage identifiers can occur more than once in a coverageList. In this case the coverage will be
evaluated each time it appears, respecting the overall inspection sequence.

EXAMPLE 1 Assume availability of coverages A, B and C. Then, the following request:

for $c in (A, B, C)
return encode($c, "image/tiff")

 will produce a result list containing three TIFF-encoded coverages.

Assume availabilityof satellite images A, B, and C and a coverage M acting as a mask (i.e. with range values of
0 and 1 and the same extent as A, B, and C). Then, masking each satellite image can be performed with this
query:

for $s in (A, B, C),
 $m in (M)
return encode($s * $m, "image/tiff")

The let clause declares a named constant and gives it a value.

ISO/FDIS 19123-3:2023(E)

12 © ISO 2023 – All rights reserved

EXAMPLE 2 The following statement defines a constant of name $timeAxis with value “date”.

let $timeAxis := "date"

NOTE 2 In most cases, named constants are used purely for convenience, to simplify the expressions and make
the code more readable.

In a let clause the named constant only takes one value. This can be a single item or a sequence (there
is no real distinction; an item is just a sequence of length one), and the sequence can contain nodes, or
atomic values, or a mixture of the two.

Named constants cannot be updated. For example, something like let $x:=$x+1 is not allowed. More
specifically, it will not lead to an evaluation error, but the result will not be as expected (see literature on
XPath). This rule can seem very strange if expecting a behaviour as in procedural languages such as
JavaScript or python. But the coverage processing language is not that kind of language. It is a declarative
language which works at a higher level. This constraint is essential to give optimizers the chance to find
execution strategies that can search vast databases in fractions of a second. SQL, XSLT and XQuery users
have found that this declarative style of programming enables to code at a higher level by telling the
system what results are wanted, rather than telling it how to go about constructing those results.

6.2.2 processingExpr

Requirement 5 https://standards.isotc211.org/19123/-3/1/req/core/processingExpr
A processingExpr element shall be either an encodeCoverageExpr (see 6.8.1) or a scalarExpr (see
6.4.1).

6.2.3 coverageExpr

Requirement 6 https://standards.isotc211.org/19123/-3/1/req/core/coverageExpr
A coverageExpr shall be either a coverageIdExpr (see 6.2.4) or a coverageConstructorExpr (see
6.3.1.1) or a coverageConstantExpr (see 6.3.1.1) or a getComponentExpr (see 6.4.1) or an
inducedExpr (see 6.5.1) or a subsetExpr (see 6.5.6.1) or a crsTransformExpr (see 6.6) or a scaleExpr
(see 6.5.7) or a decodeCoverageExpr (see 6.8.2).

NOTE A coverageExpr always evaluates to a single coverage.

6.2.4 coverageIdExpr

The coverageIdExpr element represents the name of a single coverage available. It is represented by a
coverage variable indicated in the processCoveragesExpr clause (see 6.2).

Requirement 7 https://standards.isotc211.org/19123/-3/1/req/core/coverageIdentifier
A coverageIdExpr shall be defined as follows.

Let

id be a variableName bound to a coverage C1 available.

Then,

for any coverageExpr C2,
where
 C2 = id

C2 is defined as:

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 13

Coverage constituent

 id(C2) = id(C1)

 crs(C2) = crs(C1)

domain(C2) = domain(C1)

interpolation(C2) = interpolation(C1)

rangeType(C2) = rangeType(C1)

 for all p∈domain(C2):
 value(C2,p) = value(C1,p)

EXAMPLE The following coverage expression evaluates to the complete, unchanged coverage C, assuming that
coverage iteration variable $c is bound to it at the time of evaluation:

$c

6.3 Coverage-Generating Expressions

6.3.1 coverageConstructorExpr

The coverageConstructorExpr element creates a d-dimensional grid coverage for some d≥1 by defining
the coverage’s domain, range type and range through expressions. This allows entirely new shapes,
dimensions, and values to be derived (see examples below).

The coverage domain is built from a CRS defining the multi-dimensional axes and the meaning of
coordinates, including units of measure, indicating the coordinates of the direct positions, i.e. the points
where values sit.

Axis names can be chosen according to the rules of ISO 19123-1.

A range type expression optionally creates the coverage range type. In the scope of the embedding
condensers, this expression defines the range component names as known (immutable) variables. Values
derived for some such range component will automatically be cast to the target type of that range
component.

A range expression creates the coverage range. A scalarExpr is evaluated at every direct position of the
coverage’s domain.

Requirement 8 https://standards.isotc211.org/19123/-
3/1/req/core/coverageConstructorExpr
A coverageConstructorExpr shall be defined as follows.

Let

id be an identifier,
D be a domainExpr,
T be a rangeTypeExpr,
R be a rangeSetExpr.

ISO/FDIS 19123-3:2023(E)

14 © ISO 2023 – All rights reserved

Where

C is a coverageConstructorExpr
with
 C = coverage id [D] [T] R

Let further

d be an integer with d>0,
c be a crsName representing a d -dimensional CRS,
ai be pairwise distinct variableNames for 1≤i≤d,
axisi be pairwise distinct axisNames for 1≤i≤d,
iei,1, iei,2 be integer-valued indexExprs for 1≤i≤d with iei,1 ≤ iei,2,
cei,1, cei,2 be axisPointExprs for 1≤i≤d, which are valid coordinates for axis i as per CRS c
with cei,1 ≤ cei,2,
resi be axisPointExprs with res1<…<resdfor 1≤i≤d valid for the ith axis as per c,
xei,1,… be axisPointExprs for 1≤i≤d, which are valid coordinates for axis axisi as per CRS c
with xei,1<xei,2<…,
im1,…, imm be (not necessarily distinct) interpolationMethods for 1≤i≤m with m>0.

Where

D is a domainExpr
with
 D = domain
 crs c with
 axis1 axisdef1 [interpolation im1],
 … ,
 axisd axisdefd [interpolation imd]

And

axisdefi is one of
 axisdefi,index = index (iei,1 : iei,2)
 axisdefi,regular = regular (cei,1 : cei,2) resolution resi

 axisdefi,irregular = irregular(xei,1 , … , xei,n)

And

axis names used in the domainExpr shall match pairwise against the CRS axes based on their
order of occurrence in the D expression.

NOTE The axis names axisi are made available in the current context for use as iteration variables in the
range set computation where coordinate values get bound to each direct position in turn allowing to inspect each
direct position of the coverage. Iterator names can use the axis names defined in the CRS, or can define aliases which
are matched with the CRS axis names by their position in the expression.

Let further

n be an integer with d>0,
f1,…, fn be fieldNames,
t1,…, tn be rangeTypes.

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 15

Where

T is a rangeTypeExpr
with
 T = range type
 f1 : t1,
 …
 fn : tn

Let further

r be a scalarExpr possibly containing occurrences of direct position coordinates axisi as
defined in D and range component identifiers fj as defined in T,
c1, …, cm be constants where m=|domain(C)|.

Where

R is a rangeSetExpr
with R one of
 R1 = range r
 R2 = range <c1,…, cm>

and

R is part of a coverageConstructorExpr containing a domainExpr.

Then,

C is defined as the following ISO 19123-1 grid coverage:

ISO/FDIS 19123-3:2023(E)

16 © ISO 2023 – All rights reserved

Coverage constituent

id(C) = id

crs(C) = c if D is present,
otherwise the CRS resulting from evaluatingr

domain(C) = domain extent resulting from evaluating D if present,
otherwise the domain extent resulting from evaluatingr

interpolation(C) = (x1,…, xd) where xi = imi where imi is indicated,
otherwisexi = none.

rangeType(C) = ((f1,t1), …, (fn,tn)) if T is present,
otherwise the range type resulting from evaluatingr ;
if no field names are provided (such as with R2) then the range field names are
implementation-dependent.

for all p∈domain(C) and scalarExprr:
 value(C,p) = range value resulting from evaluating r, with possible occurrences of ai

substituted by the corresponding p[i] coordinate value. If, for example through computed
direct positions, a location outside the domain of coverage addressed gets encountered then
the behaviour is implementation dependent (possible options including assuming a null value
for such a position or terminating evaluation of the request).

for all p∈domain(C) and rangeConstantExpr <c1,…, cm>:
 value(C, p) is determined by assigning each value ci in turn to a grid point location,
whereby assignment proceeds in row-major order (per dimension from the lowest to the
highest coordinate, and loops over the grid points with the first axis listed as outermost loop,
the next axis listed as next-to-outermost loop, etc. and the last axis listed as innermost loop).

NOTE A concretization of this language can extend the capabilities of the coverage constant expression by
allowing records at direct positions, rather than only atomic values.

6.3.2 Examples

The following examples illustrate use of the coverage constructor expressions in various practical
scenarios relying on common CRSs and data types (both not specified in this document).

The first domain establishes a 2D WGS 84 grid with linear interpolation along both axes.

domain
crs “EPSG:4326” with
 Lat regular (10:30) resolution 0.01 interpolation linear,
 Long regular (10:30) resolution 0.01 interpolation linear

In the following example, EPSG:4326 establishes Lat and Long axes. Therefore in the domain expression
the first axis will be associated with Lat and the second with Long, regardless of the axis naming in the
domain expression; no interpolation is admissible:

domain
 crs “EPSG:4326” with

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 17

 Lat regular (10:30) resolution 0.5,
 Long regular (10:30) resolution 0.5

The next domain establishes a 4D georeferenced timeseries datacube with a spectral dimension, regular
in Lat/Long and irregular in time (given the varying number of days a month has and based on the daily
resolution specified).

domain
crs “EPSG:4326+OGC:unixTtime” with
 Lat regular (10:30) resolution 0.5,
 Long regular (10:30) resolution 0.5,
 Date irregular (“2017-01-01”, “2017-02-01”,“2017-03-01”, “2017-04-01”,
 “2017-05-01”, “2017-06-01”,“2017-07-01”, “2017-08-01”,
 “2017-09-01”, “2017-10-01”, “2017-11-01”, ”2017-12-01”
)

The expression below represents a single-band range type:

range type
 panchromatic: integer

The following range type defines RGB pixels:

range type
 red :integer,
 green:integer,
 blue :integer

The coverage constructor below resembles an induced operation, reducing intensity in all range fields by
½. Coverage type, domain and range type are adopted from the input coverage.

coverage Half
range (integer) $c / 2

The example below follows a complete coverage constructor representing a 3D georeferenced image
timeseries whose range set gets loaded from some input file provided, represented by the positional
parameter $1. Further, some sketchy INSPIRE XML metadata record is associated:

coverage MySatelliteDatacube
domain
 crs “EPSG:4326+OGC:unixTime” with
 Lat regular (10:30) resolution 0.5,
 Long regular (10:30) resolution 0.5,
 Date regular (“2017-01”:”2019-12”) resolution “P1M”
range type panchromatic: integer
range decode($1)

The expression below computes a 256-bucket histogram over band blue of some coverage $c of
unknown domain extent and dimension:

coverage histogram
domain
 crs “OGC:Index1D” with bucket index (0:255)
range type
 b :integer

ISO/FDIS 19123-3:2023(E)

18 © ISO 2023 – All rights reserved

range
 count($c.blue = bucket)

If constituents can be determined then they do not need to be indicated; in this case input coverage $C is
copied; assuming it has range type unsigned short then the log() operation suggests a float result, so this
will be adopted as range type. Along the same line, the domain is adopted from $C:

coverage LogOfCube
range log($c)

For a Sobel filter, a 3x3 filter kernel can be provided by the expression below. The range value of matrix
element (-1/-1) is 1, the value at position (0/-1) is 2, etc.

coverage Sobel3x3
domain
 crs “OGC:Index2d” with i index (-1 : +1), j index (-1 : +1)
range
 < 1; 2; 1;
 0; 0; 0;
 -1; -2; -1
 >

A Sobel filter kernel operation can be expressed as follows:

coverage FilteredImage
domain
 crs “OGC:Index2D” with x index (0 : 5000), y index (0 : 5000)
range
 condense +
 over i (-1 : +1), j (-1 : +1)
 using $c.blue[x(x+i), y(y+j)] * Sobel3x3[i(i), j(j)]

6.4 Coverage Extraction Expressions

6.4.1 scalarExpr

Requirement 9 https://standards.isotc211.org/19123/-3/1/req/core/scalarExpr
A scalarExpr shall be either a getComponentExpr (see 7.4.2) or a booleanScalarExpr (see 7.4.3) or a
numericScalarExpr (see 7.4.4) or a stringScalarExpr (see 7.4.5).

NOTE As such, such an expression returns a (simple or composite) result value, that is: not a coverage.

6.4.2 getComponentExpr

The getComponentExpr element extracts a coverage element from a coverage.

NOTE The grid point value sets (“pixels”, “voxels”, …) can be extracted from a coverage using subsetting
operations (see Subclause 7.5.5).

Requirement 10 https://standards.isotc211.org/19123/-3/1/req/core/getComponentExpr
A getComponentExpr shall be defined as follows.

Let

C be a coverageExpr.

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 19

Then,

The following extraction functions are defined;
the result shall be given by the probing functions defined in Table 4;
strings shall be interpreted case-sensitive;
quotes shall be single or double quotes, but no mix per quoted element;
arbitrary whitespace may occur in between any two syntactical elements.

Table 4 — getComponentExpr functions

Coverage processing
function for coverage C

Semantics
as per Table 3

Description

id(C) id(C) Coverage identifier as name (if it does
not contain special characters) or a
single- or double-quoted string.

crs(C) crs(C) Identifier of the coverage’s CRS.

domain(C)

domain(C,a)

domain(C,a).lo

domain(C,a).hi

domain(C)

domain(C, a)

domain(C, a).lo

domain(C, a).hi

Domain of the coverage’s CRS.

interpolation(C,a) interpolation(C,a) Interpolation method assigned to a
coverage axis.

EXAMPLE 1 For some coverage named “iamacoverage” bound to variable $c, the following expression evaluates
to the string “iamacoverage”:

id($c)

EXAMPLE 2 For some coverage $c with native CRS WGS 84 the following expression can evaluate to the string
“EPSG:4326”, or alternatively “https://www.opengis.net/def/crs/EPSG/0/4326”, or some other designation
determined by a concretization of this document:

nativeCrs($c)

6.4.3 booleanScalarExpr

Requirement 11 https://standards.isotc211.org/19123/-3/1/req/core/booleanScalarExpr
A booleanScalarExprshall be a scalarExpr (see 7.4.1) whose result type is Boolean. Operations shall
be the well-known Boolean functions and, or, xor, and not, arithmetic comparison (>, <, >=, <=, =, !=)
on strings and numbers, and parenthesing, all bearing the well-known standard semantics.

6.4.4 numericScalarExpr

Requirement 12 https://standards.isotc211.org/19123/-3/1/req/core/numericScalarExpr
A numericScalarExpr shall be a scalarExpr (see 7.4.1) whose result type is numeric (i.e. an integer,
float, or complex number).

ISO/FDIS 19123-3:2023(E)

20 © ISO 2023 – All rights reserved

6.4.5 stringScalarExpr

Requirement 13 https://standards.isotc211.org/19123/-3/1/req/core/stringScalarExpr
A stringScalarExpr shall be a scalarExpr (see 7.4.1) whose result type is character string of length
greater or equal to zero.

6.5 Coverage range value-changing expressions

6.5.1 inducedExpr

Requirement 14 https://standards.isotc211.org/19123/-3/1/req/core/inducedExprCases
An inducedExpr shall be either a unaryInducedExpr (see Subclause 7.5.2) or a binaryInducedExpr
(see Subclause7.5.4) or a rangeConstructorExpr (see Subclause 7.5.5) or a switchExpr (see Subclause
7.5.5.2).

Induced operations allow the simultaneous application of a function originally working on a single value
to all grid point values of a coverage.

NOTE 1 These operations can be expressed through a coverageConstructorExpr, however in a more verbose way.

Requirement 15 https://standards.isotc211.org/19123/-
3/1/req/core/inducedExprComponents
In an inducedExpr, in case the range type contains more than one range component, the function shall
be applied to each point simultaneously.

Requirement 16 https://standards.isotc211.org/19123/-3/1/req/core/inducedExpr
In an inducedExpr the result coverage shall have the same domain as the input coverage(s).

NOTE 2 In case of an n-ary induced operation, n>1, all input coverages need to share the same domain as a precondition.

NOTE 3 The result can have a different range type, see Subclause 6.9.5. The idea is that for each operation available on the
range type, a corresponding coverage operation is provided (“induced from the range type operation”).

EXAMPLE Adding two RGB images will apply the “+” operation to each pixel, and within a pixel to each range
field in turn.

6.5.2 unaryInducedExpr

The unaryInducedExpr element specifies a unary induced operation, i.e. an operation where only one
coverage argument occurs.

NOTE The term “unary” refers only to coverage arguments; it is well possible that further non-coverage parameters occur,
such as an integer number indicating the shift distance in a bit() operation.

Requirement 17 https://standards.isotc211.org/19123/-
3/1/req/core/unaryInducedExprCases
A unaryInducedExpr shall be either a unaryArithmeticExpr, or trigonometricExpr, or
exponentialExpr (in which case it evaluates to a coverage with a numeric range type; see 7.5.2.1, 7.5.3,
7.5.3.1), a booleanExpr (in which case it evaluates to a Boolean expression; see 7.5.3.2), a castExpr (in
which case it evaluates to a coverage with unchanged values, but another range type; see 7.5.3.3), or a
fieldExpr (in which case a range field selection is performed; see 7.5.3.4).

6.5.2.1 unaryArithmeticExpr

The unaryArithmeticExpr element specifies a unary induced arithmetic operation.

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 21

Requirement 18 https://standards.isotc211.org/19123/-3/1/req/coreunaryArithmeticExpr
A unaryArithmeticExpr shall be defined as:

Let

C1, C2 be coverageExprs with all range type components being numeric and additionally all
range type components of C1 being of type complex,
S1, S2 be scalarExprs.

Then,

for any coverageExpr C2
where C2 is one of

Cplus = + C1

Cminus = - C1

Csqrt = sqrt(C1)
Cabs = abs(C1)
Cre = re(CC1)
C im = im(CC1)

CplusSC = S1 + C2

CminSC = S1 - C2

CmultSC = S1 * C2

CdivSC = S1 / C2

CandSC = S1 and C2

CorSC = S1 or C2

CxorSC = S1 xor C2

CeqSC = S1 = C2

C ltSC = S1 < C2

CgtSC = S1 > C2

C leSC = S1 <= C2

CgeSC = S1 >= C2

CneSC = S1 != C2

CplusCS = C1 + S2

CmincS = C1 - S2

CmultCS = C1 * S2

CdivCS = C1 / S2

CandCS = C1 and S2

CorCS = C1 or S2

CxorCS = C1 xor S2

CeqCS = C1 = S2

C ltCS = C1 <S2

CgtCS = C1 >S2

C leCS = C1 <= S2

CgeCS = C1 >= S2

CneCS = C1 != S2

C2 is defined as:

ISO/FDIS 19123-3:2023(E)

22 © ISO 2023 – All rights reserved

Coverage constituent

id(C2) = “” (empty string)

crs(C2) = crs(C1)

domain(C2) = domain(C1)

interpolation(C2) = interpolation(C1)

 for all range fields r∈rangeFieldNames(C2):

rangeFieldType(Cplus) is given by Requirement 48
rangeFieldType(Cminus) is given by Requirement 48
rangeFieldType(CplusSC) is given by Requirement 48 rangeFieldType(Csqrt,r)

= double if rangeFieldType(C1,r) ≠ complex and C1.r≥0,
= complex otherwise,

rangeFieldType(Cabs,r)
= unsigned int if rangeFieldType(C1,r) ∈{ unsigned int, int }
= float if rangeFieldType(C1,r) ∈ { float, complex }

rangeFieldType(CplusSC) is given by Requirement 48
rangeFieldType(CminSC) is given by Requirement 48
rangeFieldType(CmultSC) is given by Requirement 48
rangeFieldType(CdivSC) is given by Requirement 48
rangeFieldType(CandSC) = boolean
rangeFieldType(CorSC) = boolean
rangeFieldType(CxorSC) = boolean
rangeFieldType(CeqSC) = boolean
rangeFieldType(C ltSC) = boolean
rangeFieldType(CgtSC) = boolean
rangeFieldType(C leSC) = boolean
rangeFieldType(CgeSC) = boolean
rangeFieldType(CneSC) = boolean
rangeFieldType(CovlSC) = rangeType(C2)

rangeFieldType(CplusCS, r) is given by Requirement 48
rangeFieldType(CminCS, r) is given by Requirement 48
rangeFieldType(CmultCS, r) is given by Requirement 48
rangeFieldType(CdivCS, r) is given by Requirement 48
rangeFieldType(CandCS, r) = boolean
rangeFieldType(CorCS, r) = boolean
rangeFieldType(CxorCS, r) = boolean
rangeFieldType(CeqCS, r) = boolean
rangeFieldType(C ltCS, r) = boolean
rangeFieldType(CgtCS, r) = boolean
rangeFieldType(C leCS, r) = boolean
rangeFieldType(CgeCS, r) = boolean
rangeFieldType(CneCS, r) = boolean
rangeFieldType(CovlCS, r) = boolean

for all p∈domain(C2):
value(Cplus, p) = value(C1, p),

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 23

Coverage constituent

value(Cminus, p) = - value(C1, p),
value(Csqrt, p) = sqrt(value(C1, p)),
value(Cabs, p) = abs(value(C1, p)),
value(Cre, p) = re(value(C1, p)),
value(C im, p) = im(value(C1, p)),

value(CplusSC) = value(S1) + value(C2)
value(CminSC) = value(S1) - value(C2)
value(CmultSC) = value(S1) * value(C2)
value(CdivSC) = value(S1) / value(C2)
value(CandSC) = value(S1) and value(C2)
value(CorSC) = value(S1) or value(C2)
value(CxorSC) = value(S1) xor value(C2)
value(CeqSC) = value(S1) == value(C2)
value(C ltSC) = value(S1) < value(C2)
value(CgtSC) = value(S1) > value(C2)
value(C leSC) = value(S1) <= value(C2)
value(CgeSC) = value(S1) >= value(C2)
value(CneSC) = value(S1) != value(C2)
value(CovlSC) = value(S1) overlay value(C2)

value(CplusC)S = value(C1) + value(S2)
value(CmincS) = value(C1) - value(S2)
value(CmultCS) = value(C1) * value(S2)
value(CdivCS) = value(C1) / value(S2)
value(CandCS) = value(C1) and value(S2)
value(CorCS) = value(C1) or value(S2)
value(CxorCS) = value(C1) xor value(S2)
value(CeqCS) = value(C1) == value(S2)
value(C ltCS) = value(C1) < value(S2)
value(CgtCS) = value(C1) > value(S2)
value(C leCS) = value(C1) <= value(S2)
value(CgeCS) = value(C1) >= value(S2)
value(CneCS) = value(C1) != value(S2)
value(CovlCS) = value(C1) overlay value(S2)

EXAMPLE For two integer or float valued coverages $c and $d, the following coverage expression evaluates
to a float-type coverage where each range value contains the square root of the sum of the corresponding source
coverages’ values.

sqrt($c + $d)

6.5.3 trigonometricExpr

The trigonometricExpr element specifies a unary induced trigonometric operation.

Requirement 19 https://standards.isotc211.org/19123/-3/1/req/core/trigonometricExpr
A trigonometricExpr shall be defined as:

Let

ISO/FDIS 19123-3:2023(E)

24 © ISO 2023 – All rights reserved

C1 be a coverageExpr

Then,

for any coverageExprC2
where C2 is one of

Csin = sin(C1)
Ccos = cos(C1)
Ctan = tan(C1)
Csinh = sinh(C1)
Ccosh = cosh(C1)
Carcsin = arcsin(C1)
Carccos = arccos(C1)
Carctan = arctan(C1)

C2 is defined as:

Coverage constituent

id(C2) = “” (empty string)

crs(C2) = crs(C1)

domain(C2) = domain(C1)

interpolation(C2) = interpolation(C1)

rangeFieldNames (C2) = rangeFieldNames (C1)

 for all fields r∈rangeFieldNames(C2):
rangeFieldType(C2,r)

= complex if rangeFieldType(C1,r) = complex
= float otherwise

 for all p∈domain(C2):
value(Csin,p) = sin(value(C1,p))
value(Ccos,p) = cos(value(C1,p))
value(Ctan,p) = tan(value(C1,p))
value(Csinh,p) = sinh(value(C1,p))
value(Ccosh,p) = cosh(value(C1,p))
value(Carcsin,p) = arcsin(value(C1,p))
value(Carccos,p) = arccos(value(C1,p))
value(Carctan,p) = arctan(value(C1,p))

EXAMPLE The following expression replaces all values of the coverage addressed by $c with their sine:

sin($c)

To enforce a complex result for real-valued arguments the input coverage can be cast to complex:

arcsin((complex) $c)

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 25

6.5.3.1 exponentialExpr

The exponentialExpr element specifies a unary induced exponential operation.

Requirement 20 https://standards.isotc211.org/19123/-3/1/req/core/exponentialExpr
An exponentialExpr shall be defined as:

Let

C1 be a coverageExpr,
c be a floatConstantor complexConstant

Then,

for any coverageExprC2
where C2 is one of

Cexp = exp(C1)
C log = log(C1)
C ln = ln(C1)
Cpow = pow(C1, c)

C2 is defined as:

Coverage constituent

id(C2) = “” (empty string)

crs(C2) = crs(C1)

domain(C2) = domain(C1)

interpolation(C2) = interpolation(C1)

rangeFieldNames (C2) = rangeFieldNames (C1)

for all fields r∈rangeFieldNames(C2):
rangeFieldType(C2,r)

= complex if rangeFieldType(C1,r) = complex
= float otherwise

 for all p∈domain(C2):
value(Cexp, p) = exp(value(C1,p))
value(C log , p) = log(value(C1,p))
value(C ln , p) = ln(value(C1,p))
value(Cpow, p) = value(C1,p)c

EXAMPLE The following expression derives the natural logarithm for all values of some all-positive coverage
expression $c:

ln($c)

6.5.3.2 booleanExpr

The booleanExpr element specifies a unary induced Boolean operation.

ISO/FDIS 19123-3:2023(E)

26 © ISO 2023 – All rights reserved

Requirement 21 https://standards.isotc211.org/19123/-3/1/req/core/booleanExpr
A booleanExpr shall be defined as:

Let

C1 be a coverageExpr,
n be a positive integer number.

Then,

for any coverageExprC2
where

C2 = not C1
where n is an expression evaluating to a nonnegative integer value

C2 is defined as:

Coverage constituent

id(C2) = “” (empty string)

crs(C2) = crs(C1)

domain(C2) = domain(C1)

interpolation(C2) = interpolation(C1)

rangeFieldNames (C2) = rangeFieldNames (C1)

 for all fields r∈rangeFieldNames(C2):
rangefieldType(C2,r) = boolean

 for all p∈domain(C2):
value(Cnot , p) = not(value(C1,p))

EXAMPLE The following expression inverts all (assumed: Boolean) range field values of coverage expression
$c:

not $c

6.5.3.3 castExpr

The castExpr element specifies a unary induced cast operation, that is: to change the range type of the
coverage while leaving all other properties unchanged. All range components are converted to this same
type.

NOTE Depending on the input and output types, the conversion result can suffer from a loss of accuracy or
overflow, up to being entirely wrong (such as when casting from long to short).

Requirement 22 https://standards.isotc211.org/19123/-3/1/req/core/castExpr
A castExpr shall be defined as:

Let

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 27

C1 be a coverageExpr,
t be a range field type name.

Then,

for any coverageExprC2
where

C2 = (t) C1

C2 is defined as:

Coverage constituent

id(C2) = “” (empty string)

crs(C2) = rs(C1)

domain(C2) = domain(C1)

interpolation(C2) = interpolation(C1)

rangeFieldNames (C2) = rangeFieldNames (C1)

 for all fields r∈rangeFieldNames(C2):
rangeFieldType(C2,r) = t

 for all p∈domain(C2):
value(C2 , p) = (t) value(C1,p)

EXAMPLE For some integer or float valued coverage the result range type of the following expression will be
integer instead of float:

(integer) ($c / 2)

6.5.3.4 fieldExpr

The fieldExpr element specifies a unary induced field selection operation. Fields are selected by their
name.

NOTE Due to the current restriction to atomic range fields, the result of a field selection has atomic values too.

Requirement 23 https://standards.isotc211.org/19123/-3/1/req/core/fieldExpr
A fieldExpr shall be defined as:

Let

C1 be a coverageExpr,
f be a fieldName appearing in rangeFieldNames(C1),
i be an integer with 0≤i<|rangeFieldNames(C1)|.

Then,

for any coverageExprC2
where C2 is one of:

ISO/FDIS 19123-3:2023(E)

28 © ISO 2023 – All rights reserved

C2,f = C1 . f
C2,I = C1 . i

C2 is defined as:

Coverage constituent

id(C2) = “” (empty string)

crs(C2) = crs(C1)

domain(C2) = domain(C1)

interpolation(C2) = interpolation(C1)

rangeFieldNames (C2) = (f), the sequence containing only f

rangeFieldType(C2,f) = rangeFieldType(C1,f)

for all p∈domain(C2):
value(C2,f,p) = value(C1.f,p)
value(C2,i,p) = value(C1.g,p)

where g is the ith field in rangeFieldNames(C1)

EXAMPLE Let $c refer to anexpression resulting in a coverage of with two bands, red and green. Then the
following expression describes a single-field, integer-type coverage where each grid point value contains the ratio
between red and green band, cast back to integer from the division result type float:

(integer) $c.red / $c.green

Requirement 24 https://standards.isotc211.org/19123/-3/1/req/core/fieldExprShorthand
In a fieldExpr C.f where |rangeFieldNames(C)|=1, the evaluation of C.f shall be identical to the
evaluation of C.

EXAMPLE Let $c refer to a coverage expression with range component red, $d a single-component range
type (say, a panchromatic satellite scene). Assuming both are compatible (as per induced expression definition) the
following expression is valid:

$c.red - $d

6.5.4 binaryInducedExpr

The binaryInducedExpr element specifies a binary induced operation, i.e. an operation involving two
coverage-valued arguments.

Requirement 25 https://standards.isotc211.org/19123/-
3/1/req/core/binaryInducedExprNumber
In a binaryInducedExpr, both participating coverages shall be aligned in the following components:
- same native CRS;
- same domain;
- same number of range components;
- same interpolation for each axis.

Requirement 26 https://standards.isotc211.org/19123/-3/1/req/core/binaryInducedExpr
A binaryInducedExpr shall be defined as:

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 29

Let

C1, C2 be coverageExprs,
N be 0 or some null value (to be defined by a concretization of this document)
where

crs(C1) = crs(C2),
domain(C1,a) = domain(C2,a),

rangeFieldNames(C1) = rangeFieldNames(C2),
rangeType(C1,f) is cast-compatible with rangeType(C2,f) or

rangeType(C2,f) is cast-compatible with rangeType(C1,f)
for all f∈rangeFieldNames(C1).

Then,

for any coverageExprC3
where C3 is one of

CplusCC = C1 + C2

CminCC = C1 - C2

CmultCC = C1 * C2

CdivCC = C1 / C2

CandCC = C1 and C2

CorCC = C1 or C2

CxorCC = C1 xor C2

CeqCC = C1 = C2

C ltCC = C1 < C2

CgtCC = C1 > C2

C leCC = C1 <= C2

CgeCC = C1 >= C2

CneCC = C1 != C2

CovlCC = C1 overlay C2

C3 is defined as:

Coverage constituent

id(C3) = “” (empty string)

crs(C3) = crs(C1)

domain(C3) = domain(C1)

interpolation(C3) = interpolation(C1)

rangeFieldNames (C3) = rangeFieldNames (C1)

 for all r∈rangeFieldNames(C3):

rangeFieldType(CplusCC, r) is given by Requirement 48
rangeFieldType(CminCC, r) is given by Requirement 48
rangeFieldType(CmultCC, r) is given by Requirement 48
rangeFieldType(CdivCC, r) is given by Requirement 48
rangeFieldType(CandCC, r) = boolean
rangeFieldType(CorCC, r) = boolean

ISO/FDIS 19123-3:2023(E)

30 © ISO 2023 – All rights reserved

Coverage constituent

rangeFieldType(CxorCC, r) = boolean
rangeFieldType(CeqCC, r) = boolean
rangeFieldType(C ltCC, r) = boolean
rangeFieldType(CgtCC, r) = boolean
rangeFieldType(C leCC, r) = boolean
rangeFieldType(CgeCC, r) = boolean
rangeFieldType(CneCC, r) = boolean
rangeFieldType(CovlCC, r) = rangeFieldType(C1, r)

 for all p∈domain(C3):
value(CplusCC, p) = value(C1, p) + value(C2, p)
value(CminCC, p) = value(C1, p) - value(C2, p)
value(CmultCC, p) = value(C1, p) * value(C2, p)
value(CdivCC, p) = value(C1, p) / value(C2, p)
value(CandCC, p) = value(C1, p) and value(C2, p)
value(CorCC, p) = value(C1, p) or value(C2, p)
value(CxorCC, p) = value(C1, p) xor value(C2, p)
value(CeqCC, p) = value(C1, p) = value(C2, p)
value(C ltCC, p) = value(C1, p) < value(C2, p)
value(CgtCC, p) = value(C1, p) > value(C2, p)
value(C leCC, p) = value(C1, p) <= value(C2, p)
value(CgeCC, p) = value(C1, p) >= value(C2, p)
value(CneCC, p) = value(C1, p) != value(C2, p)
value(CovlCC, p) = value(C2, p) if value(C1, p)=N

value(C1, p) otherwise

EXAMPLE The following expression describes a coverage composed of the sum of the red, green and blue fields
of the coverage referred to by $c:

$c.red + $c.green + $c.blue

6.5.5 N-ary Induced operations

6.5.5.1 rangeConstructorExpr

The rangeConstructorExpr, an n-ary induced operation, allows building coverages with compound
range structures. To this end, coverage range field expressions enumerated are combined into one
coverage.

All input coverages shall match wrt. domains and CRSs. An input coverage range field may be listed more
than once.

Requirement 27 https://standards.isotc211.org/19123/-
3/1/req/core/rangeConstructorExprNames
The names of the range fields generated by the operation shall be given by the names prefixed to each
component expression.

Requirement 28 https://standards.isotc211.org/19123/-
3/1/req/core/rangeConstructorExpr
A rangeConstructorExpr shall be defined as:

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 31

Let

n be an integer with n≥1,
C1, …, Cn be coverageExprs with |rangeFieldNames(C i)|=1 (i.e., just a single range component),
f1, …, fn be fieldNames
where, for 1≤i,j≤n,

crs(Ci) = crs(Cj),
domain(Ci) = domain(Cj)
gridCrs(C i) = gridCrs(C j),
interpolation(C i) = interpolation(C j).

Then,

for any coverageExprC’
where C’ is one of

C’a = { f1 : C1 ; … ; fn : Cn }
C’b = struct { f1 : C1 ; … ; fn : Cn }

C’ is defined as:

Coverage constituent

id(C’) = “” (empty string)

crs(C’) = crs(C1)

domain(C’) = domain(C1)

rangeFieldNames(C’) = (f1, …, fn)

for all range fields f i:
rangeFieldType(C’,f i) = rangeFieldType(C i)

 for all p∈domain(C’):
value(C’.fi,p) = value(C i,p)

 for all range fields f i:
interpolation(C’) = interpolation(C1)

EXAMPLE 1 The expression below shows a false colour encoding by combining near-infrared, red and green
bands into a 3-band image, which can potentially be visually interpreted as RGB:

struct {
red: $c.nir;
green: $c.red;
blue: $c.green

}

EXAMPLE 2 The following expression transforms a greyscale image referred to by variable $g containing a
range field panchromatic into an RGB-structured image:

struct {
red: $g.panchromatic;
green: $g.panchromatic;

ISO/FDIS 19123-3:2023(E)

32 © ISO 2023 – All rights reserved

blue: $g.panchromatic
}

6.5.5.2 switchExpr

The switchExpr provides a case distinction for choosing among a set of coverages that all share domain
and range type. Conditions provided are evaluated sequentially, and the first true alternative is chosen if
any; otherwise, the default alternative is chosen.

— If the result expressions return scalar values, the returned scalar value on a branch is used in places
where the condition expression on that branch evaluates to true.

— If the result expressions return coverages, the values of the returned coverage on a branch are
copied in the result coverage in all places where the condition coverage on that branch contains
pixels with value true.

NOTE The conditions of the statement are evaluated in a manner similar to the if-then-else statement in
programming languages such as Java or C++. This implies that the conditions needs to be specified by order of
generality, starting with the least general and ending with the default result, which is the most general one. A less
general condition specified after a more general condition will be ignored, as the expression meeting the less general
expression will have had met already the more general condition.

Requirement 29 https://standards.isotc211.org/19123/-3/1/req/core/switchExpr
Syntax and semantics of a switchExpr shall be given as follows.

Let

n be an integer withn≥1,
b1, …, bn be booleanExprs with a single Boolean range component,
C1, …, Cn be coverageExprs with a single Boolean range component,
R, R1, …, Rn+1 be coverageExprs,

where, for 1≤i≤n,

crs(C1) = … = crs(Cn) = crs(R1) = … = crs(Rn+1),
domain(C1) = … = domain(Cn) = domain(R1) = … = domain(Rn+1),
interpolation(C1) = … = interpolation(Cn) = interpolation(R1) = … = interpolation(Rn+1),
rangeType(R1) = … = rangeType(Rn+1).

Then,

for any coverageExprC’
where

C’ = switch
case C1 return R1
…
case Cn return Rn

default return Rn+1

C’ is defined as:

Coverage constituent

id(C’) = “” (empty string)

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 33

crs(C’) = crs(R1)

domain(C’) = domain(R1)

interpolation(C’) = interpolation(R1)

rangeType(C’) = rangeType(R1)

for all p∈domain(C’):
value(C’, p) = V
where V =
 if value(C1,p) then value(R1,p)
else if value(C2,p) then value(R2,p)
…
else if value(Cn,p) then value(Rn,p)

 else value(Rn+1,p)

EXAMPLE 1 The expression below performs a traffic light classification on some single-band coverage $c.

switch
 case $c < 10 return $c * {red: 0; green: 0; blue: 255}
 case $c < 20 return $c * {red: 0; green: 255; blue: 0}
 case $c < 30 return $c * {red: 255; green: 0; blue: 0}
 default return {red: 0; green: 0; blue: 0}

EXAMPLE 2 The example below computes a log of all positive values in $c, and assigns 0 to the remaining ones.
This way it avoids an exception that would otherwise be thrown if any cell were not above zero.

switch
 case $c>0 return log($c)
 default return 0

6.5.6 Coverage Domain-Changing Expressions

6.5.6.1 subsetExpr

The subsetExpr element specifies spatial and temporal domain subsetting. It encompasses spatial and
temporal trimming (i.e. constraining the result coverage domain to a subinterval, 7.5.6.2), slicing (i.e.
cutting out a hyperplane from a coverage, 7.5.6.3), extending (7.5.6.3), and scaling (7.5.7) of a coverage
expression.

Requirement 30 https://standards.isotc211.org/19123/-3/1/req/core/subsetExpr
A subsetExpr shall be either a trimExpr (7.5.6.2) or a sliceExpr (7.5.6.3) or an extendExpr (7.5.6.3)
or a scalingExpr (7.5.7).

NOTE 1 The special case that subsetting leads to a single point remaining still resembles a coverage by definition;
this coverage is viewed as being of dimension 0.

NOTE 2 Range subsetting is accomplished via the unary induced fieldExpr (see 7.5.3.4).

6.5.6.2 trimExpr

The trimExpr element extracts a subset from a given coverage expression along the dimension indicated,
specified by a lower and upper bound for each dimension affected. Interval limits can be expressed in the
coverage CRS or any other CRS explicitly indicated, as long as a transformation to the coverage CRS exists.

ISO/FDIS 19123-3:2023(E)

34 © ISO 2023 – All rights reserved

Requirement 31 https://standards.isotc211.org/19123/-3/1/req/core/trimExprInside
In a trimExpr lower as well as upper limits shall lie inside the coverage’s domain.

For syntactic convenience, both array-style addressing using brackets and function-style syntax are
provided; both are equivalent in semantics.

Requirement 32 https://standards.isotc211.org/19123/-3/1/req/core/trimExpr
A trimExpr shall be defined as:

Let

C1 be a coverageExpr,
n be an integer with 0≤n,
(lo1:hi1),…,(lon:hin) be dimensionIntervalExprs with loi≤hii for 1 ≤i≤n.

Then,

for any coverageExprC2
where C2 is one of

Cbracket = C1[p1, …, pn]
with

pi is one of
pnat,I = ai (loi : hii)
pcrs,I = ai : crsi (loi : hii)

where each interval is within the coverage’s bounds, as expressed by interval and axis (possibly
reprojected from an optional CRS indicated).

C2 is defined as:

Coverage constituent

id(C2) = “” (empty string)

 crs(C2) = crs(C1)

domain(C2) = domain(C1) reduced to extent (loi:hii) for any domain axis ai (reprojected
from crsi into the coverage CRS if crsi is present), and with domain extent properly
adjusted for any index axis ai present in the trim list

interpolation(C2) = interpolation(C1)

rangeType(C2) = rangeType(C1)

 for all p∈domain(C2):
value(C2, p) = value(C1, p)

EXAMPLE The following are syntactically valid, equivalent trim expressions:

$c[Lon (-120: -80), Lat (-10: +10)]

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 35

6.5.6.3 sliceExpr

The sliceExpr element extracts a spatial slice (i.e. a hyperplane) from a given coverage expression along
one of its dimensions, specified by one or more slicing dimensions and a slicing position thereon. For each
slicing dimension indicated, the resulting coverage has a dimension reduced by 1; its dimensions are the
dimensions of the original coverage, in the same sequence, with the section dimension being removed
from the list. CRSs/axes not used by any of the remaining dimensions are removed from the coverage’s
CRS set.

Requirement 33 https://standards.isotc211.org/19123/-
3/1/req/core/sliceExprCoordinatesInside
In a sliceExpr the slicing coordinates shall lie inside the coverage’s domain.

For syntactic convenience, both array-style addressing using brackets and function-style syntax are
provided; both are equivalent in semantics.

Requirement 34 https://standards.isotc211.org/19123/-3/1/req/core/sliceExpr
A sliceExpr shall be defined as:

Let

C1 be a coverageExpr,
n be an integer with 0≤n,
a1,…,an be pairwise distinct axisNames with ai ∈axisNameSet(C1) for 1≤i≤n,
s1,…,sn be axisPointExprs for 1≤i≤n. which evaluate, according to normal arithmetic rules, to
coordinate values.

Then,

for any coverageExprC2
where C2 is one of

Cbracket = C1[S1, …, Sn]
with

Si is one of
Snat,I = ai (si)
Scrs,I = ai : crsi (si)

C2 is defined as:

Coverage constituent

 id(C2) = “” (empty string)

 crs(C2) = crs(C1) projected to the axes remaining

domain(C2) = domain(C1) reduced to the axes of nativeCrs(C2)

interpolation(C2) = interpolation(C1)

rangeType(C2) = rangeType(C1)

 for all p∈domain(C1) :
value(C2, p) = value(C1,p’) where p’is the projection of p to nativeCrs(C2)

ISO/FDIS 19123-3:2023(E)

36 © ISO 2023 – All rights reserved

EXAMPLE The following is a valid slice expression:

$c[Date (“2021-08-28”)]

6.5.6.4 extendExpr

The extendExpr element extends a coverage to the bounding box indicated. How the new grid points are
filled with values is implementation-dependent (for example, null is an appropriate value).

There is no restriction on the position and size of the new bounding box; in particular, it does not need to
lie outside the coverage; it may intersect with the coverage; it may lie completely inside the coverage; it
may not intersect the coverage at all. Hence, the operation can extend or reduce the footprint in each axis
individually.

NOTE 1 In this sense the extendExpr is a generalization of the trimExpr; nevertheless, it is best to use the
trimExpr whenever the application wants to be sure that a proper subsetting has to take place.

Extension is only possible where the new coordinates can be extrapolated. This is the case for index and
regular axes, and therefore no extension along an irregular axis is possible.

Requirement 35 https://standards.isotc211.org/19123/-3/1/req/core/extendExpr
An extendExpr shall be defined as:

Let

C1 be a coverageExpr,
n be an integer with 0≤n,
a1,…,an be pairwise distinct axisNames with ai ∈axisList(nativeCrs(C1)) for 1≤i≤n,
crs1,…,crsn be crsNames with crsi ∈crsList(C1) for 1≤i≤n,
(lo1:hi1),…,(lon:hin) be dimensionIntervalExprs with loi≤hii for 1≤i≤n,
N be 0 or NaN or some null value (to be defined by a concretization of this document).

Then,

for any coverageExprC2
where

C2 = extend (C1, {p1, …, pn })
with

pi is one of
pnat,I = ai (loi : hii)
pcrs,I = ai : crsi (loi : hii)

C2 is defined as:

Coverage constituent

id(C2) = “” (empty string)

crs(C2) = crs(C1)

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 37

domain(C2) = domain(C1) adjusted to extent (loi:hii) for any domain axis ai (reprojected
from crsi into the coverage nativeCRS if crsi is present), and with domain extent properly
adjusted for any axis ai present in the extend list; axes not mentioned remain unchanged.

interpolation(C2) = interpolation(C1)

rangeType(C2) = rangeType(C1)

 for all p∈domain(C2):
value(C2, p) = value(C1,p) for p∈domain(C1)
value(C2, p) = N otherwise

NOTE 2 A concretization can restrict the CRSs available on the result, as not all CRSs necessarily are technically
appropriate.

EXAMPLE The following is a valid extend() expression:

extend($c, { x (-200 : +200) })

6.5.7 scaleExpr

The scaleExpr element reduces resolution of a grid coverage while leaving the geographic extent
unchanged. The new target resolution is specified by a grid interval along each axis.

NOTE 1 Scaling regularly involves range interpolation, hence numerical effects have to be expected.

Requirement 36 https://standards.isotc211.org/19123/-3/1/req/core/scaleExpr1
A scaleExpr shall be defined as:

Let

C1 be a coverageExpr with only index and regular grid axes,
m, n be integers with 0≤m and 0≤n,
a1,…,am be pairwise distinct axisNames with ai∈gridCrs(C1) for 1≤i≤m,
Ii be intervalExprs for 1≤i≤m which evaluate to pairs loi, hii with loi≤hii.

Then,

For any coverageExpr C2,
where

C2 = scale (C1, { a1 (I1), …, am (Im)})

C2 is defined as:

Coverage constituent

id(C2) = “” (empty string)

rs(C2) = crs(C1)

domain(C2) = domain(C1)

ISO/FDIS 19123-3:2023(E)

38 © ISO 2023 – All rights reserved

interpolation(C2) = interpolation(C1)

rangeType(C2) = rangeType(C1)

 for all p∈domain(C2):
value(C2, p) is obtained by rescaling the coverage grid along dimensions ai such that

the coverage’s extent along dimension ai is set to (loi:hii), expressed in the coverage’s
grid CRS; all other dimensions remain unaffected. Whenever interpolation is needed the
respective axis interpolation method of the coverage expression gets applied.

EXAMPLE The following expression performs x/y scaling of some coverage referenced by variable $c using
the interpolation method of each coverage axis. Note that $c can have further axes, such as time, which would
remain unaffected.

scale($c, { x (100: 200), y (300: 400) })

NOTE 2 In practice, a concretization will provide several variants of scaling for convenience.

6.6 Coverage Derivation Expressions

6.6.1 crsTransformExpr

The crsTransformExpr element performs reprojection of a coverage from its native CRS into another
one; the dimension of the coverage as well as the axis types (such as regular vs. irregular) remains
unchanged whereas axes and range values generally change. For the interpolation and resampling which
is usually incurred, the interpolation method to be applied can be indicated optionally.

NOTE 1 This changes the range values (e.g. pixel radiometry).

NOTE 2 Some CRS combinations can be not supported.

Requirement 37 https://standards.isotc211.org/19123/-3/1/req/core/crsTransformExpr
A crsTransformExpr shall be defined as:

Let

C1 be a coverageExpr,
c be a crsName.

Then,

for any coverageExprC2
where

C2 = crsTransform(C1, c)

C2 is defined as:

Coverage constituent

id(C2) = “” (empty string)

crs(C2) = c

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 39

domain(C2) = domain(C1)

interpolation(C2) = interpolation(C1)

rangeFieldNames(C2) = rangeFieldNames(C1)

 for all range fields r∈rangeFieldNames(C2):
rangeFieldType(C2,r) = rangeFieldType(C1,r)

 for all p∈domain(C2):
value(C2,p) is obtained by reprojecting coverage C1 from its CRS into CRS c.

Interpolation will be applied as necessary.

EXAMPLE The following expression transforms coverage $c (which is assumed to be 2D with some not further
specified CRS) into the CRS identified by EPSG:3035.

crsTransform($c, “EPSG:3035”)

6.7 Coverage Aggregation Expressions

6.7.1 condenseExpr

Requirement 38 https://standards.isotc211.org/19123/-3/1/req/core/condenseExpr
A condenseExpr shall be either a reduceExpr (see 6.7.3) or a generalCondenseExpr (see 6.7.2).

This expression takes a coverage and summarizes its values using a summarization function. The value
returned is scalar, i.e. a single scalar value or a record of values, reflecting the number of the input
coverage’s range type components.

NOTE In practice, aggregation results can be null if aggregation encounters null values in the coverage
expression. The handling of null values is is governed by the value set definition which is out of scope of this
document. It depends on whether a concretization defines types with null values included. It is expected, though,
that a concretization will define null value handling in a way that for every direct position evaluated, if any of the
values participating is null, then the result for this direct position will be null.

6.7.2 generalCondenseExpr

The general generalCondenseExpr consolidates the grid point values of a coverage along selected
dimensions to a scalar value based on the condensing operation indicated. It iterates over a given domain
while combining the result values of the scalarExprs through the condenseOpType indicated.
Admissible condenseOpTypes are the binary operations +, *, max, min, and, and or.

Requirement 39 https://standards.isotc211.org/19123/-
3/1/req/core/generalCondenseExpr
A generalCondenseExpr shall be defined as:

Let

op be a condenseOpType,
n be some integer with n≥0,
d be some integer with d>0,
axisi be axisNames for 1≤i≤d,
namei be pairwise distinct variableNames for 1≤i≤d which, in the request on hand, are not
used already as a variable in this expression’s scope,

ISO/FDIS 19123-3:2023(E)

40 © ISO 2023 – All rights reserved

Ii be intervalExprs for 1≤i≤d which evaluate to pairs loi, hii with loi≤hii,
Cj be coverageExprs for 1≤j≤n,
P be a booleanExpr possibly containing occurrences of namei and Cj,
V be a scalarExpr or coverageExpr possibly containing occurrences of namei and Cj,
N be a neutral element of type(V)
where
 1≤i≤d.

Then,

For any scalarExprS
where S is one of

S’ = condense op
over name1 axis1 (I1),
 …,
 named axisd (Id)
[whereP]
using V

S” = condense op
over axis1 (I1),
 …,
 axisd (Id)
[whereP]
using V

S is constructed as follows (for S”, substitute namei by axisi):

S := N;
for all name1 ∈ {lo1,… ,hi1}

for all name2 ∈ {lo2,… ,hi2}
…

for all named ∈ {lod,… ,hid}
if (filtering expression P is present)
then

let predicate P’ be obtained from evaluating expression
P by substituting all occurrences of namei by its current
value where namei occurring in a coordinate position
of Cj are coordinates in the CRS of Cj

else
P’ = true;

fi
if (P’)
then

let V’ be obtained from evaluating expression V
by substituting all occurrences of namei by its current
value where namei occurring in a coordinate position
of Cj are coordinates in the CRS of Cj where
possible extra dimensions in a coverageExpr are
treated as in induced operations;
S := S op value(V’)

fi
endfor

…
endfor

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 41

endfor
return S

NOTE 1 Condensers are heavily used, among others, in two situations:

— to collapse Boolean-valued coverage expressions into scalar Boolean values so that they can be used in
predicates;

— in conjunction with the coverageConstructorExpr (see 6.3.1.1) to phrase high-level imaging, signal
processing, and statistical operations.

NOTE 2 The additional expressive power of condenseExpr over reduceExpr is twofold:

— a concretization can offer further summarisation functions, as long as these form a monoid, i.e. they are
commutative and associative and have a neutral element;

— the condenseExpr gives explicit access to the coordinate values; this makes summarization considerably
more powerful (see example below).

EXAMPLE 1 The following expression iterates over a 5000x5000 extent of image $c delivering the sum of all
values encountered at the direct positions:

condense +
overx (0 : 4999), y (0 : 4999)
using $c[i(x) , j(y)]

EXAMPLE 2 Iteration is possible also in native coordinates as the direct positions are uniquely identified:

condense +
overy (20 : 30), x (40 : 50)
using $c[Lat(y) , Lon(x)]

EXAMPLE 3 A timeline diagram can be obtained through a 1D expression which aggregates over space while
iterating over time:

coverage AverageTemperature
domain
 crs “OGC:DateTime” with t (domain($temperatureCube, Date)
)
range type t: float
range
 condense +
 over lat (domain($temperatureCube, Lat)),

lon (domain($temperatureCube, Lon))
 using $temperatureCube[Lat(lat), (Lon(lon), Date(t)]

EXAMPLE 4 For a filter kernel k, the condenser summarizes not only over the grid point under inspection, but
also some neighbourhood. The following applies a 3x3 filter kernel to band b of some coverage $c with extent
x0…x1/y0…y1; note that the result image is defined to have an x and y dimension:

Coverage FilteredImage
domain
 crs “OGC:Index2D” with x (0 : 4999), y (0 : 4999)
range type f: int
range
 condense +
 over i (-1 : +1),

ISO/FDIS 19123-3:2023(E)

42 © ISO 2023 – All rights reserved

 j (-1 : +1)
 using $c[x+i , y+j] * k[i, j]

where k is a 3x3 matrix like:

1 2 1
0 0 0
-1 -2 -1

NOTE See coverageConstantExpr for a way to specify the k matrix.

6.7.3 reduceExpr

A reduceExpr element derives a summary value from the coverage passed; in this sense it “reduces” a
coverage to a scalar value.

NOTE All these operations can be expressed through a condenseExpr, but in a more verbose way.

Requirement 40 https://standards.isotc211.org/19123/-3/1/req/core/reduceExpr
A reduceExpr shall be either an add, avg, min, max, count, some, or all operation as per Table 5.

NOTE Within Table 5, $a is assumed to evaluate to a coverage with a single numeric range field, $b to a coverage with a
single Boolean range field.

Table 5 — reduceExpr definition via generalCondenseExpr

reduceExpr definition Description

add($a) =
condense +
over $p1 (domain($a,D1)),
 …,
 $pd (domain($a,D1)),
using $a[$p1 , …, $pd]

sum over all points in $a

avg($a) =
add($a) / | domain($a) |

average of all points in $a

min($a) =
condense min
over $p1 (domain($a,D1)),
 …,
 $pd (domain($a,D1))
using $a[$p1 , …, $pd]

minimum of all points in $a

max($a) =
condense max
over $p1 (domain($a,D1)),
 …,
 $pd (domain($a,D1))
using $a[$p1 , …, $pd]

maximum of all points in $a

count($b) =
condense +
over $p1 (domain($b,D1)),

…,

number of points in $b

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 43

reduceExpr definition Description
 $pd (domain($b,D1))
where $b[$p1 , …, $pd]
using 1

some($b) =
condense or
over $p1 (domain($b,D1)),
 …,
 $pd (domain($b,D1))
using $b[$p1 , …, $pd]

is there any point in $b with value true?

all($b) =
condense and
over $p1 D1(domain($b,D1)),
 …,
 $pd Dd(domain($b,D1))
using $b[$p1 , …, $pd]

do all points of $b have value true?

EXAMPLE The previous average temperature example can be expressed through a more compact range:

coverage AverageTemperature
domain
 crs “OGC:DateTime” with t (domain($temperatureCube, Date)
)
range type t: float
range
 avg($temperatureCube[Date(t)]

6.8 Coverage Encode/Decode Expressions

6.8.1 encodeCoverageExpr

The encodeCoverageExpr element specifies encoding of a coverage-valued query result by means of a
data format and possible extra encoding parameters.

Data format encodings are not in the scope of this document.

Requirement 41 https://standards.isotc211.org/19123/-3/1/req/core/encode
An encodeCoverageExpr shall be defined as:

Let

C be a coverageExpr,
f be a string
where

f is a stringConstant,
extraParams be a stringConstant.

ISO/FDIS 19123-3:2023(E)

44 © ISO 2023 – All rights reserved

Then,

for any stringS
where S is one of

Se = encode (C,f)
See = encode (C,f, extraParams)

S is defined as that (binary or printable) byte string which encodes C into the data format
specified by formatName and the optional extraParams.

Syntax and semantics of both f and the extraParams are not specified in this document. A set of
suitable data formats is expected to be provided by a concretization of this language.

NOTE It is acceptable that some format encodings can lead to a loss of information, not allowing the
reconstruction of a complete coverage or the reuse of it in a decode() operation.

EXAMPLE The following expression can retrieve coverage $c encoded in JPEG with a quality factor of 50 %:

encode($c, "image/jpg", ".50")

6.8.2 decodeCoverageExpr

A decodeCoverageExpr evaluates a byte stream passed as a parameter to a coverage by decoding the
byte stream. This byte stream is required to represent a coverage encoding following CIS 1.1 [09-146r6][8]
and its coverage encoding profiles.

NOTE Implementations will be able to recognize the encoding format used from analyzing the input byte
stream, hence normally no format indication parameter is required. Generally, though, the extraParams syntax
and semantics is data format and implementation dependent.

Requirement 42 https://standards.isotc211.org/19123/-3/1/req/core/decode
Syntax and semantics of a decodeCoverageExpr shall be given as follows.

Let

s be a string

where

s is a valid (binary or printable) representation of a complete coverage or a domain, range
type, range, or metadata component of a coverage,
extraParams is a stringConstant containing decoding directives.

Then,

for any decodeCoverageExprC
whereC is one of

Ce = decode(s)
Cee = decode(s, extraParams)

C is defined as the decoded coverage or coverage component equivalent to s while applying
the directives in extraParams.

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 45

In practice, this function can be used in several ways:

— to provide inline constants, encoded, for example, in XML or JSON;

— to provide complete input files, accompaniying the query, through positional parameters;

— to provide input coverages and other values by reference, such as through URIs.

EXAMPLE Assume a NetCDF file is passed as a single extra parameter in some concrete service. The service
will decode the NetCDF byte stream and establish the corresponding coverage before further evaluation of the
complete query:

decode($1)

6.9 Expression evaluation

This sublause defines additional rules for ProcessCoverages expression evaluation.

6.9.1 Evaluation sequence

Requirement 43 https://standards.isotc211.org/19123/-3/1/req/core/sequence
A processingExpr shall evaluate coverage expressions from left to right.

6.9.2 Nesting

Requirement 44 https://standards.isotc211.org/19123/-3/1/req/core/nesting
A processingExpr shall allow nesting all operators, constructors and functions arbitrarily, provided
that each sub-expression's result type matches the required type at the position where the sub-
expression occurs, and all semantics rules are fulfilled.

6.9.3 Parentheses

A processingExpr may contain parentheses to enforce a particular evaluation sequence.

Requirement 45 https://standards.isotc211.org/19123/-3/1/req/core/parentheses
Parentheses enforcing evaluation sequence in a processingExpr shall be defined as:

Let

C1 and C2 be coverageExprs.

Then,

For any coverageExpr C2

where
 C2 = (C1)

C2 is defined as yielding the same result as C1.

EXAMPLE $c * ($c > 0)

6.9.4 Operator precedence rules

Requirement 46 https://standards.isotc211.org/19123/-3/1/req/core/precedence
In case of ambiguities in the syntactical analysis of a request, operators shall have the following
precedence (listed in descending strength of binding):

ISO/FDIS 19123-3:2023(E)

46 © ISO 2023 – All rights reserved

— Range field selection, trimming, slicing

— unary –

— unary arithmetic, trigonometric, and exponential functions

— binary *, /

— binary +, -

— binary <, <=, >, >=, !=, =

— binary and

— binary or, xor

— :(interval constructor), condense, coverage, coverage constructor

— Overlay, switch

In all remaining cases evaluation shall be performed left to right.

6.9.5 Range type compatibility and extension

A range type t1 is said to be cast-compatible with a range type t2 if the following conditions hold:

— Both range types,t1 and t2, have the same number of field elements, say d;

— For each range field element positioni with 1≤i≤d, theith range field type f1,i of t1 is cast-
compatible with theith range field type f2,i of t2.

Cast compatibility is expected to be defined in detail in a concretization of this language.

Requirement 47 https://standards.isotc211.org/19123/-3/1/req/core/typeExtension
The type of each of the operands of an arithmetic operator (+, -, *, /) shall be a type that can be
extended to a numeric numeric type, and the result type of anarithmetic expression shall be the
common extended type of all of its operands as:
If the extended type is integer then integer arithmetic shall be performed.
If the extended type is float then floating-point arithmetic shall be performed.
If the extended type is complex then complex arithmetic shall be performed.
The result type shall be the smallest type allowing to represent the result without loss.

NOTE Explicit and implicit casts need to be used with caution, as unintended consequences can arise. Data can
be lost when floating-point representations are converted to integral representations as the fractional components
of the floating-point values will be truncated (rounded down). Conversely, converting from an integral re-
presentation to a floating-point one can also lose precision, since the floating-point type can potentially be unable
to represent the integer exactly (for example, float possibly gets mapped to an IEEE 754 single precision type, which
cannot represent the integer 16777217 exactly, while a 32-bit integer type can). This can lead to situations such as
storing the same integer value into two variables of type int and type float which return false if compared for
equality.

6.10 Evaluation response

If, for whatever reason, the query cannot be evaluated properly then an error is returned as the evaluation
result. On an abstract level, an error is a possible result value not equal to any valid result.

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 47

Requirement 48 https://standards.isotc211.org/19123/-3/1/req/core/error
Whenever a coverage expression cannot be evaluated according to the rules specified in 6.1 and 6.8,
evaluation shall respond with an error.

NOTE Concretizations of this specification will define some appropriate behaviour depending on the target
environment, such as return codes, exceptions, etc. Even not all syntactically valid expressions will be semantically
admissible in practice. Possible issues include: quota are exceeded, access restrictions apply.

EXAMPLE The following expressions will lead to an error (reasons: division by zero; illegal trigonometric
argument):

$C / 0

arcsin(2)

The result of evaluating a processCoveragesExpr is one of the following:

Requirement 49 https://standards.isotc211.org/19123/-3/1/req/core/result
Depending on its result type, the normal result of evaluating a valid query shall consist of one of the
following alternatives:

— a (possibly empty) list of coverages;

— a (possibly empty) list of scalars (where scalar summarizes all non-coverage type data, such as
numbers, strings, URLs) or of records of scalars;

— an error.

ISO/FDIS 19123-3:2023(E)

48 © ISO 2023 – All rights reserved

Annex A
(normative)

Conformance Tests

A.1 Conformance Class
This document defines one conformance class, Coverage Processing, which constitutes the mandatory
Core every standardization target shall support.

Standardization targets are specifications containing provisions for coverage processing. A specification
claiming conformance to this document shall implement the Coverage Processing conformance class.

Conformance with this document shall be assessed using all conformance test cases specified in this
annex.

A.2 Conformance Class Coverage Processing Core

Conformance test https://standards.isotc211.org/19123/-3/1/conf/core/allRequirements

Reference All normative statements in requirements class: Coverage Processing

Test purpose: Verify that the specification under test conforms to all requirements of this con-
formance class

Test method: Evaluate every requirement of this conformance class in turn; the overall test
passes if every single test passes

Test type: Basic

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 49

Annex B
(normative)

Expression Syntax

B.1 Overview
This annex summarizes the coverage processing expression syntax. It is described in W3C EBNF grammar
syntax.[5]

NOTE 1 This is a machine-readable language not requiring formal translation into ISO-supported languages.

Tokens in single quotation marks represent literals which appear “as is” in a valid expression (“terminal
symbols”). Other tokens represent either sub-expressions to be substituted according to the grammar
production rules (“non-terminals”) or terminal symbol classes like identifiers, strings and numbers as
listed at the end of this annex. The processCoveragesExpr nonterminal is the start of the production
system.

Any number of whitespace characters (blank, tabulator, newline) may appear between tokens as long as
parsing is unambiguous.

EXAMPLE Between language tokens (such as “for”) and names there shall be at least one whitespace character,
whereas between names and non-alphanumeric tokens (such as opening parenthesis, “(“), no whitespace is
required.

Meta symbols used are as:

— brackets (“[…]”) denote optional elements which may occur or be left out;

— an asterisk after parentheses (“(…)*”) denotes that an arbitrary number of repetitions of the
parenthesis contents can be chosen, including none at all;

— a plus after parentheses (“(…)+”) denotes that an arbitrary number of repetitions of the parenthesis
contents can be chosen, at least one;

— a question mark after parentheses (“(…)?”) denotes that zero or one of the parenthesis contents
can be chosen;

— a vertical bar (“|”) denotes alternatives from which exactly one shall be chosen;

— double slashes (“//”) begin comments which continue until the end of the line. Comments are
normative.

NOTE 2 The syntax as is remains ambiguous; the semantic rules listed in this document disambiguate the
grammar.

B.2 Terminal symbols
The following are terminal symbols, in addition to the underlined terminal literals: variableName;
name; stringConstant; booleanConstant; integerConstant; and floatConstant.

A variableName shall adhere to the following regular expression: $[a-zA-Z_][0-9a-zA-Z_]*.

ISO/FDIS 19123-3:2023(E)

50 © ISO 2023 – All rights reserved

This regular expression describes a consecutive sequence of characters where the first character shall be
either an alphabetical character or the “$” character and the remaining characters consist of decimal
digits, upper case alphabetical characters, lower case alphabetical characters, underscore (“_”) and
nothing else. The length of an identifier shall be at least 1.

A name shall adhere to the following regular expression: ([a-zA-Z_][0-9a-zA-Z_]*)|(“.+”).

NOTE This describes it to either be a consecutive sequence of digits and/or letters where the first character is
a letter, or a non-empty string constant.

While this document does not make assumptions about particularities of atomic data types (such as short
vs long integers, float vs double, and the associated bit lengths) the common basic data types Boolean,
integer, float, and complex are assumed to be available (with complex syntactically being a composite
expression, as usual).

A booleanConstant shall represent a logical truth value expressed as one of the literals “true” and
“false” resp., whereby uppercase and lowercase characters shall not be distinguished.

An integerConstant shall represent an integer number expressed in either decimal, octal (with a “0”
prefix), or hexadecimal notation (with a “0x” or “0X” prefix).

A floatConstant shall represent a floating point number in common decimal-point or exponential
notation.

A stringConstant shall represent a character sequence enclosedin single or double quotes, with no
mix of both in a single constant.

B.3 Processing Syntax
processCoveragesExpr ::=
 'for' variableName 'in' '(' coverageList ')'
 (',' variableName 'in' '(' coverageList ')')*
 ('let' letBinding (',' letBinding)*)?
 ('where' booleanScalarExpr)?
 'return' processingExpr

coverageList ::=
 coverageName (',' coverageName)*

letBinding ::=
 variableName ':=' coverageExpr
 | scalarExpr
 | '[' intervalExpr ']'

processingExpr ::=
 encodeCoverageExpr
 | scalarExpr

formatName ::=
 stringConstant

extraParams ::=
 stringConstant

coverageExpr ::=
 coverageIdExpr

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 51

 | coverageConstructorExpr
 | coverageConstantExpr
 | getComponentExpr
 | inducedExpr
 | subsetExpr
 | crsTransformExpr
 | scaleExpr
 | decodeCoverageExpr

coverageIdExpr ::=
 coverageName

coverageConstructorExpr ::=
 'coverage' coverageName
 (domainExpr)? (rangeTypeExpr)? rangeSetExpr

domainExpr ::=
 'domain'
 'crs' nameOrString 'with'
 nameOrString axisDefExpr (',' nameOrString axisdefExpr)*
 (interpolationExpr)?

interpolationExpr ::=
 'interpolation ' interpolationMethod (',' interpolationMethod
)*

interpolationMethod ::=
 none
 | name

axisDefExpr ::=
 'index' (indexExpr ':' indexExpr)
 | 'regular' (axisPointExpr ':' axisPointExpr)
 'resolution' axisPointExpr
 | 'irregular' (axisPointExpr (',' axisPointExpr)*)

rangeTypeExpr ::=
 'range' 'type' rangeComponent (',' rangeComponent)*

rangeComponent ::=
 name ':' rangeType

rangeType ::=
 'boolean'
 | ('unsigned')? 'int'
 | 'float'
 | 'complex'

rangeSetExpr ::=
 'range' (scalarExpr | rangeConstantExpr)

rangeConstantExpr ::=
 '<' constant (';' constant)* '>'

scalarExpr ::=
 getComponentExpr

ISO/FDIS 19123-3:2023(E)

52 © ISO 2023 – All rights reserved

 | booleanScalarExpr
 | numericScalarExpr
 | stringScalarExpr
 | '(' scalarExpr ')'

getComponentExpr ::=
 identifierExpr
 | crs '(' coverageExpr ')' | getDomainExpr
 | interpolation '(' coverageExpr ')'

identifierExpr ::=
 | 'id' '(' coverageExpr ')'
 | 'name' '(' coverageExpr ')'

getDomainExpr ::=
 'domain' '(' coverageExpr ')'
 | 'domain' '(' coverageExpr ',' axisName ')'
 | 'domain' '(' coverageExpr ',' axisName ')' '.' 'lo'
 | 'domain' '(' coverageExpr ',' axisName ')' '.' 'hi'

booleanScalarExpr ::=
 booleanScalarExpr 'or' booleanScalarTerm
 | booleanScalarExpr 'xor' booleanScalarTerm
 | booleanScalarTerm

booleanScalarTerm ::=
 booleanScalarTerm 'and' booleanScalarFactor
 | booleanScalarFactor

booleanScalarFactor ::=
 numericScalarExpr compOp numericScalarExpr
 | stringScalarExpr compOp stringScalarExpr
 | not booleanScalarExpr
 | '(' booleanScalarExpr ')'
 | booleanConstant

compOp ::=
 '='
 | '!='
 | '>'
 | '>='
 | '<'
 | '<='

numericScalarExpr ::=
 numericScalarExpr '+' numericScalarTerm
 | numericScalarExpr '-' numericScalarTerm
 | numericScalarTerm

numericScalarTerm ::=
 numericScalarTerm '*' numericScalarFactor
 | numericScalarTerm '/' numericScalarFactor
 | numericScalarFactor

numericScalarFactor ::=
 '(' numericScalarExpr ')'

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 53

 | '-' numericScalarFactor
 | 'round' '(' numericScalarExpr ')'
 | integerConstant
 | floatConstant
 | complexConstant
 | condenseExpr

stringScalarExpr ::=
 identifierExpr
 | stringConstant

inducedExpr ::=
 unaryInducedExpr
 | binaryInducedExpr
 | naryInducedExpr

unaryInducedExpr ::=
 unaryArithmeticExpr
 | exponentialExpr
 | trigonometricExpr
 | booleanExpr
 | castExpr
 | fieldExpr

unaryArithmeticExpr ::=
 '+' coverageAtom
 | '-' coverageAtom
 | 'sqrt' '(' coverageExpr ')'
 | 'abs' '(' coverageExpr ')'
 | 're' '(' coverageExpr ')'
 | 'im' '(' coverageExpr ')'

trigonometricExpr ::=
 'sin' '(' coverageExpr ')'
 | 'cos' '(' coverageExpr ')'
 | 'tan' '(' coverageExpr ')'
 | 'sinh' '(' coverageExpr ')'
 | 'cosh' '(' coverageExpr ')'
 | 'tanh' '(' coverageExpr ')'
 | 'arcsin' '(' coverageExpr ')'
 | 'arccos' '(' coverageExpr ')'
 | 'arctan' '(' coverageExpr ')'

exponentialExpr ::=
 'exp' '(' coverageExpr ')'
 | 'log' '(' coverageExpr ')'
 | 'ln' '(' coverageExpr ')'
 | 'pow' '(' coverageExpr ')'

castExpr ::=
 '(' rangeType ')' coverageExpr

fieldExpr ::=
 coverageExpr '.' fieldName
 | coverageExpr '.' integerConstant

ISO/FDIS 19123-3:2023(E)

54 © ISO 2023 – All rights reserved

binaryInducedExpr ::=
 binaryInducedLogicExpr 'or' binaryInducedLogicTerm
 | binaryInducedLogicExpr 'xor' binaryInducedLogicTerm
 | binaryInducedLogicTerm

binaryInducedLogicTerm ::=
 binaryInducedLogicTerm 'and' binaryInducedLogicFactor
 | binaryInducedLogicFactor

binaryInducedLogicFactor ::=
 binaryInducedArithmExpr compOp binaryInducedArithmExpr
 | binaryInducedArithmExpr

binaryInducedArithmExpr ::=
 binaryInducedArithmExpr '+' binaryInducedArithmTerm
 | binaryInducedArithmExpr '-' binaryInducedArithmTerm
 | binaryInducedArithmTerm

binaryInducedArithmTerm ::=
 binaryInducedArithmTerm '*' binaryInducedArithmFactor
 | binaryInducedArithmTerm '/' binaryInducedArithmFactor
 | binaryInducedArithmFactor

binaryInducedArithmFactor ::=
 binaryInducedArithmFactor 'overlay' binaryInducedExpr
 | inducedExpr

naryInducedExpr ::=
 rangeConstructorExpr
 | switchExpr

rangeConstructorExpr ::=
 ('struct')? '{' fieldName ':' scalarExpr
 (';' fieldName ':' scalarExpr)* '}'

switchExpr ::=
 'switch'
 'case' coverageExpr 'return' coverageExpr
 ('case' coverageExpr 'return' coverageExpr)*
 'default' 'return' coverageExpr

subsetExpr ::=
 trimExpr
 | sliceExpr
 | extendExpr
 | scalingExpr

trimExpr ::=
 coverageExpr '[' dimensionIntervalList ']'

dimensionIntervalExpr ::=
 dimensionIntervalExpr (',' dimensionIntervalExpr)*

dimensionIntervalExpr ::=
 axisExpr '(' axisPointExpr ':' axisPointExpr ')'

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 55

axisExpr ::=
 axisName (':' crsName)?

axisPointExpr ::= axisName
 | floatConstant
 | stringConstant

sliceExpr ::=
 coverageExpr '[' axisPointElement (',' axisPointElement)* ']'

axisPointElement ::=
 axisExpr '(' axisPointExpr ')'

extendExpr ::=
 'extend' '(' coverageExpr ',' '{' dimensionIntervalList '}' ')'

scaleExpr ::=
 'scale' '(' coverageExpr ',' '{' dimensionIntervalList '}' ')'

crsTransformExpr ::=
 'crsTransform' '(' coverageExpr ',' crsName ')'

encodeCoverageExpr ::=
 'encode' '(' coverageExpr ',' formatName (',' extraParams)?
')'

decodeCoverageExpr ::=
 'decode' '(' stringConstant (',' extraParams)? ')'

condenseExpr ::=
 reduceExpr
 | generalCondenseExpr

generalCondenseExpr ::=
 'condense' condenseOpType
 'over' axisIterator (',' axisIterator)*
 ('where' booleanScalarExpr)?
 'using' scalarExpr

condenseOpType ::=
 '+'
 | '*'
 | 'max'
 | 'min'
 | 'and'
 | 'or'

axisIterator ::=
 name [axisName] '(' intervalExpr ')'

intervalExpr ::=
 axisPointExpr ':' axisPointExpr

reduceExpr ::=
 'all' '(' coverageExpr ')'
 | 'some' '(' coverageExpr ')'

ISO/FDIS 19123-3:2023(E)

56 © ISO 2023 – All rights reserved

 | 'count' '(' coverageExpr ')'
 | 'add' '(' coverageExpr ')'
 | 'avg' '(' coverageExpr ')'
 | 'min' '(' coverageExpr ')'
 | 'max' '(' coverageExpr ')'

coverageName ::=
 nameOrString

crsName ::=
 nameOrString

axisName ::=
 nameOrString

fieldName ::=
 nameOrString

constant ::=
 stringConstant
 | booleanConstant
 | integerConstant
 | floatConstant
 | complexConstant

complexConstant ::=
 '(' floatConstant ',' floatConstant ')'
 | '(' integerConstant ',' integerConstant ')'

nameOrString ::=
 name
 | stringConstant

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 57

Annex C
(informative)

Syntax diagrams

Figures C.1 to C.70 provide graphical representations of the syntax (often called “syntax diagrams” or
“railroad diagrams”) for the reader’s convenience. In case of deviation, the normative syntax in Annex B
prevails.

NOTE 1 This is a machine language not requiring formal translation.

NOTE 2 Diagrams generated by RR - Railroad Diagram Generator.

Figure C.1 — processCoveragesExpr

Figure C.2 — coverageList

Figure C.3 — letBinding

https://bottlecaps.de/rr/ui

ISO/FDIS 19123-3:2023(E)

58 © ISO 2023 – All rights reserved

Figure C.4 — processingExpr

Figure C.5 — formatName

Figure C.6 — extraParams

Figure C.7 — coverageExpr

Figure C.8 — coverageIdExpr

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 59

Figure C.9 — coverageConstructorExpr

Figure C.10 — domainExpr

Figure C.11 — interpolationExpr

Figure C.12 — interpolationMethod

Figure C.13 — axisDefExpr

ISO/FDIS 19123-3:2023(E)

60 © ISO 2023 – All rights reserved

Figure C.14 — rangeTypeExpr

Figure C.15 — rangeComponent

Figure C.16 — rangeType

Figure C.17 — rangeSetExpr

Figure C.18 — rangeConstantExpr

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 61

Figure C.19 — scalarExpr

Figure C.20 — getComponentExpr

Figure C.21 — identifierExpr

Figure C.22 — getDomainExpr

ISO/FDIS 19123-3:2023(E)

62 © ISO 2023 – All rights reserved

Figure C.23 — booleanScalarExpr

Figure C.24 — booleanScalarTerm

Figure C.25 — booleanScalarFactor

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 63

Figure C.26 — compOp

Figure C.27 — numericScalarExpr

Figure C.28 — numericScalarTerm

ISO/FDIS 19123-3:2023(E)

64 © ISO 2023 – All rights reserved

Figure C.29 — numericScalarFactor

Figure C.30 — stringScalarExpr

Figure C.31 — inducedExpr

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 65

Figure C.32 — unaryInducedExpr

Figure C.33 — unaryArithmeticExpr

ISO/FDIS 19123-3:2023(E)

66 © ISO 2023 – All rights reserved

Figure C.34 — trigonometricExpr

Figure C.35 — exponentialExpr

Figure C.36 — castExpr

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 67

Figure C.37 — fieldExpr

Figure C.38 — binaryInducedExpr

Figure C.39 — binaryInducedLogicFactor

Figure C.40 — binaryInducedArithmExpr

Figure C.41 — binaryInducedArithmTerm

ISO/FDIS 19123-3:2023(E)

68 © ISO 2023 – All rights reserved

Figure C.42 — binaryInducedArithmFactor

Figure C.43 — naryInducedExpr

Figure C.44 — rangeConstructorExpr

Figure C.45 — switchExpr

Figure C.46 — subsetExpr

Figure C.47 — trimExpr

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 69

Figure C.48 — dimensionIntervalExpr

Figure C.49 — axisExpr

Figure C.50 — axisPointExpr

Figure C.51 — sliceExpr

Figure C.52 — axisPointElement

Figure C.53 — - extendExpr

ISO/FDIS 19123-3:2023(E)

70 © ISO 2023 – All rights reserved

Figure C.54 — scaleExpr

Figure C.55 — crsTransformExpr

Figure C.56 — encodeCoverageExpr

Figure C.57 — decodeCoverageExpr

Figure C.58 — condenseExpr

Figure C.59 — generalCondenseExpr

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 71

Figure C.60 — condenseOpType

Figure C.61 — axisIterator

Figure C.62 — intervalExpr

ISO/FDIS 19123-3:2023(E)

72 © ISO 2023 – All rights reserved

Figure C.63 — reduceExpr

Figure C.64 — coverageName

Figure C.65 — crsName

Figure C.66 — axisName

Figure C.67 — fieldName

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 73

Figure C.68 — constant

Figure C.69 — complexConstant

Figure C.70 — nameOrString

ISO/FDIS 19123-3:2023(E)

74 © ISO 2023 – All rights reserved

Annex D
(informative)

Sample service descriptions

D.1 Overview
This annex presents, as an example of the use of the coverage processing language, the specification of
the OGC Web Coverage Service (WCS)[3] semantics through coverage expressions. WCS-Core and several
of its extensions are modeled.

D.2 WCS-Core
WCS-Core defines access to a coverage, subsetting, and output format encoding in the GetCoverage
request.

Extensions below often extend the GetCoverage request with additional parameters triggering the
additional functionality in the server. Therefore, when such extension functionality is used the resulting
ISO 19123-1 expression describing the semantics will be a functional merge of all individual WCS Core’s
and extensions’ expressions involved.

Input parameters:

— {cov}
— {subset-axis1}, {subset-axis2}, …
— {fmt} (default: coverage native format)

WCS GetCoverage request in GET/KVP syntax:

https://acme.com/wcs?SERVICE=WCS&VERSION=2.0&REQUEST=GetCoverage&
 COVERAGEID={cov}&
 SUBSET={subset-axis1}&SUBSET={subset-axis2}&...&
 FORMAT={fmt}

NOTE The SUBSET parameter gets broken down into a trim or slice on the axes addressed.

Semantics:

for $c in ({cov}) return encode({cov} {subset}, {fmt})

D.3 WCS-Range-Subsetting
WCS-Range-Subsetting is an optional WCS extension which allows extraction of range components (in
various application domains also called “bands”, “variables”, etc.). Technically, an additional parameter
extends the WCS-Core GetCoverage request.

Input parameters:

— {cov}
— {range-subset}

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 75

WCS GetCoverage request in GET/KVP syntax:

https://acme.com/wcs?SERVICE=WCS&VERSION=2.0&REQUEST=GetCoverage&
 COVERAGEID={cov}&
 RANGESUBSET={range-subset}

Semantics:

for $c in ({cov}) return encode({cov}. {range-subset}, {fmt})

D.4 WCS-Scaling
WCS-Scaling is an optional WCS extension which allows reducing the resolution of a grid coverage.
Technically, additional parameters extend the WCS-Core GetCoverage request. Here, one of the several
scaling variants is described:

Input parameters:

— {cov} (as per WCS-Core)
— {scale-factor}

WCS GetCoverage request in GET/KVP syntax:

https://acme.com/wcs?SERVICE=WCS&VERSION=2.0&REQUEST=GetCoverage&
 COVERAGEID={cov}&
 SCALEFACTOR={scale-factor}

Semantics:

for $c in ({cov}) return encode(scale({cov} {scale-factor}), {fmt})

D.5 WCS-CRS
WCS-CRS is an optional WCS extension which allows reprojection of a coverage into a different CRS (and
formulate a subsetting request in a CRS different from the coverage’s CRS. This is omitted here for
simplicity). Technically, additional parameters extend the WCS-Core GetCoverage request.

Input parameters:

— {cov} (as per WCS-Core)
— {output-crs} CRS into which coverage is transformed
— {format} encoding format in which result is returned

WCS GetCoverage request in GET/KVP syntax:

https://acme.com/wcs?SERVICE=WCS&VERSION=2.0&REQUEST=GetCoverage&
 COVERAGEID={cov}&
 OUTPUTCRS={output-crs}

Semantics:

for $c in ({cov}) return encode(crsTransform({cov}, {output-crs}), {format})

ISO/FDIS 19123-3:2023(E)

76 © ISO 2023 – All rights reserved

D.6 WCS-Processing
WCS-Processing is an optional WCS extension which allows sending an OGC WCPS request to a server
and obtain the evaluation result. WCPS is based on the OGC Coverage Implementation Schema (CIS)
model which is identical to ISO 19123-2, a concretization of the ISO 19123-1 data model. Technically, an
additional request type is added to WCS named ProcessCoverages. For the overlapping part of both
languages and assuming the ISO 19123-2 coverage model, translation is 1:1.

Input parameters:

— {wcps-expression}

WCS ProcessCoverage request in GET/KVP syntax:

https://acme.com/wcs?SERVICE=WCS&VERSION=2.0&REQUEST=ProcessCoverage&
 QUERY={wcps-expression}

Semantics:

{wcps-expression}

ISO/FDIS 19123-3:2023(E)

© ISO 2023 – All rights reserved 77

Bibliography

[1] Baumann, P.: The OGC Web Coverage Processing Service (WCPS) Standard. Geoinformatica,
14(4)2010, pp 447-479

[2] Baumann, P.: OGC Web Coverage Processing Service (WCPS) Language Interface Standard. OGC
document 08-068r3 [online]. Available from: https://docs.ogc.org/is/08-068r3/08-068r3.html

[3] P. Baumann: Towards a Model-Driven Datacube Analytics Language. Proc. IEEE Big Spatial Data
Workshop, December 17, 2021, [online]. Available from: http://localhost/public_html/Website-
IUB/iu-bremen.de_pbaumann//Papers/2021/IEEE-BigSpatialData_WCPS.pdf

[4] Baumann, P.: OGC Web Coverage Service (WCS) Interface Standard – Core. OGC document 17-
089r1 [online]. Available from: http://docs.opengeospatial.org/is/17-089r1/17-089r1.html

[5] ISO/IEC 19123:2022, Geographic information —Schema for coverage geometry and functions —
Part 1: Fundamentals

[6] W3C: XQuery 1.0: An XML Query Language (Second Edition) [online]. Available from:
https://www.w3.org/TR/2010/REC-xquery-20101214

[7] ISO/IEC 19123-2:2019, Geographic information — Schema for coverage geometry and functions
— Part 2: Coverage implementation schema

[8] OGC, OGC Coverage Implementation Schema [online]. Available from: https://docs.ogc.org/is/09-
146r6/09-146r6.html

https://docs.ogc.org/is/08-068r3/08-068r3.html
http://localhost/public_html/Website-IUB/iu-bremen.de_pbaumann/Papers/2021/IEEE-BigSpatialData_WCPS.pdf
http://localhost/public_html/Website-IUB/iu-bremen.de_pbaumann/Papers/2021/IEEE-BigSpatialData_WCPS.pdf
http://docs.opengeospatial.org/is/17-089r1/17-089r1.html
https://www.w3.org/TR/2010/REC-xquery-20101214
https://docs.ogc.org/is/09-146r6/09-146r6.html
https://docs.ogc.org/is/09-146r6/09-146r6.html

ISO/FDIS 19123-3:2023(E)

ICS 35.240.70
Price based on 77 pages

© ISO 2023 – All rights reserved

